Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genes Dev ; 36(1-2): 53-69, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969823

RESUMEN

Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Complejo Sinaptonémico , Animales , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , Intercambio Genético , Mamíferos/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
2.
Genes Dev ; 32(3-4): 283-296, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440262

RESUMEN

Meiotic crossover formation requires the stabilization of early recombination intermediates by a set of proteins and occurs within the environment of the chromosome axis, a structure important for the regulation of meiotic recombination events. The molecular mechanisms underlying and connecting crossover recombination and axis localization are elusive. Here, we identified the ZZS (Zip2-Zip4-Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. We found that Zip2 and Spo16 share structural similarities to the structure-specific XPF-ERCC1 nuclease, although it lacks endonuclease activity. The XPF domain of Zip2 is required for crossover formation, suggesting that, together with Spo16, it has a noncatalytic DNA recognition function. Our results suggest that the ZZS complex shepherds recombination intermediates toward crossovers as a dynamic structural module that connects recombination events to the chromosome axis. The identification of the ZZS complex improves our understanding of the various activities required for crossover implementation and is likely applicable to other organisms, including mammals.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Intercambio Genético , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cromosómicas no Histona/química , Cromosomas Fúngicos , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Endodesoxirribonucleasas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química
3.
Chromosoma ; 128(3): 181-198, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31236671

RESUMEN

Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.


Asunto(s)
Intercambio Genético , Recombinación Homóloga , Meiosis/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Fenotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Multimerización de Proteína , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA