RESUMEN
Development of the endosperm is strikingly different in monocots and dicots: it often manifests as a persistent tissue in the former and transient tissue in the latter. Little is known about the controlling mechanisms responsible for these different outcomes. Here we characterized a maize (Zea mays) mutant, endosperm breakdown1 (enb1), in which the typically persistent endosperm (PE) was drastically degraded during kernel development. ENB1 encodes a cellulose synthase 5 that is predominantly expressed in the basal endosperm transfer layer (BETL) of endosperm cells. Loss of ENB1 function caused a drastic reduction in formation of flange cell wall ingrowths (ingrowths) in BETL cells. Defective ingrowths impair nutrient uptake, leading to premature utilization of endosperm starch to nourish the embryo. Similarly, developing wild-type kernels cultured in vitro with a low level of sucrose manifested early endosperm breakdown. ENB1 expression is induced by sucrose via the BETL-specific Myb-Related Protein1 transcription factor. Overexpression of ENB1 enhanced development of flange ingrowths, facilitating sucrose transport into BETL cells and increasing kernel weight. The results demonstrated that ENB1 enhances sucrose supply to the endosperm and contributes to a PE in the kernel.
Asunto(s)
Endospermo , Zea mays , Pared Celular/metabolismo , Endospermo/metabolismo , Glucosiltransferasas , Sacarosa/metabolismo , Zea mays/metabolismoRESUMEN
Most TRIM family members characterized by the E3-ubiquitin ligases, participate in ubiquitination and tumorigenesis. While there is a dearth of a comprehensive investigation for the entire family in gastric cancer (GC). By combining the TCGA and GEO databases, common TRIM family members (TRIMs) were obtained to investigate gene expression, gene mutations, and clinical prognosis. On the basis of TRIMs, a consensus clustering analysis was conducted, and a risk assessment system and prognostic model were developed. Particularly, TRIM31 with clinical prognostic and diagnostic value was chosen for single-gene bioinformatics analysis, in vitro experimental validation, and immunohistochemical analysis of clinical tissue microarrays. The combined dataset consisted of 66 TRIMs, of which 52 were differentially expressed and 43 were differentially prognostic. Significant survival differences existed between the gene clusters obtained by consensus clustering analysis. Using 4 differentially expressed genes identified by multivariate Cox regression and LASSO regression, a risk scoring system was developed. Higher risk scores were associated with a poorer prognosis, suppressive immune cell infiltration, and drug resistance. Transcriptomic data and clinical sample tissue microarrays confirmed that TRIM31 was highly expressed in GC and associated with a poor prognosis. Pathway enrichment analysis, cell migration and colony formation assay, EdU assay, reactive oxygen species (ROS) assay, and mitochondrial membrane potential assay revealed that TRIM31 may be implicated in cell cycle regulation and oxidative stress-related pathways, contribute to gastric carcinogenesis. This study investigated the whole functional and expression profile and a risk score system based on the TRIM family in GC. Further investigation centered around TRIM31 offers insight into the underlying mechanisms of action exhibited by other members of its family in the context of GC.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Masculino , Biología Computacional/métodos , Movimiento Celular/genética , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Colon cancer is one of the most common digestive tract malignancies. Although immunotherapy has brought new hope to colon cancer patients, there is still a large proportion of patients who do not benefit from immunotherapy. Studies have shown that neutrophils can interact with immune cells and immune factors to affect the prognosis of patients. METHODS: We first determined the infiltration level of neutrophils in tumors using the CIBERSORT algorithm and identified key genes in the final risk model by Spearman correlation analysis and subsequent Cox analysis. The risk score of each patient was obtained by multiplying the Cox regression coefficient and the gene expression level, and patients were divided into two groups based on the median of risk score. Differences in overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier survival analysis, and model accuracy was validated in independent dataset. Differences in immune infiltration and immunotherapy were evaluated by immunoassay. Finally, immunohistochemistry and western blotting were performed to verify the expression of the three genes in the colon normal and tumor tissues. RESULTS: We established and validated a risk scoring model based on neutrophil-related genes in two independent datasets, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, with SLC11A1 and SLC2A3 as risk factors and MMP3 as a protective factor. A new nomogram was constructed and validated by combining clinical characteristics and the risk score model to better predict patients OS and PFS. Immune analysis showed that patients in the high-risk group had immune cell infiltration level, immune checkpoint level and tumor mutational burden, and were more likely to benefit from immunotherapy. CONCLUSIONS: The low-risk group showed better OS and PFS than the high-risk group in the neutrophil-related gene-based risk model. Patients in the high-risk group presented higher immune infiltration levels and tumor mutational burden and thus may be more responsive to immunotherapy.
Asunto(s)
Neoplasias del Colon , Neutrófilos , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Factores de Riesgo , Algoritmos , InmunoterapiaRESUMEN
MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Mutación , Plantas Modificadas Genéticamente , Zea mays , Zea mays/genética , Plantas Modificadas Genéticamente/genética , Edición Génica/métodos , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADNRESUMEN
Grain filling in maize (Zea mays) is intricately linked to cell development, involving the regulation of genes responsible for the biosynthesis of storage reserves (starch, proteins, and lipids) and phytohormones. However, the regulatory network coordinating these biological functions remains unclear. In this study, we identified 1744 high-confidence target genes co-regulated by the transcription factors (TFs) ZmNAC128 and ZmNAC130 (ZmNAC128/130) through chromatin immunoprecipitation sequencing coupled with RNA-seq analysis in the zmnac128/130 loss-of-function mutants. We further constructed a hierarchical regulatory network using DNA affinity purification sequencing analysis of downstream TFs regulated by ZmNAC128/130. In addition to target genes involved in the biosynthesis of starch and zeins, we discovered novel target genes of ZmNAC128/130 involved in the biosynthesis of lipids and indole-3-acetic acid (IAA). Consistently, the number of oil bodies, as well as the contents of triacylglycerol, and IAA were significantly reduced in zmnac128/130. The hierarchical regulatory network centered by ZmNAC128/130 revealed a significant overlap between the direct target genes of ZmNAC128/130 and their downstream TFs, particularly in regulating the biosynthesis of storage reserves and IAA. Our results indicated that the biosynthesis of storage reserves and IAA is coordinated by a multi-TFs hierarchical regulatory network in maize endosperm.
Asunto(s)
Endospermo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ácidos Indolacéticos/metabolismo , Endospermo/metabolismo , Endospermo/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Genes de Plantas , Mutación/genética , Almidón/metabolismo , Almidón/biosíntesisRESUMEN
Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-ß-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.
Asunto(s)
Cadherinas , Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Humanos , Ratones , beta Catenina/metabolismo , Cadherinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , FibrosisRESUMEN
Pure red cell aplasia (PRCA) is a rare bone marrow disorder characterized by a severe reduction or absence of erythroid precursor cells, without affecting granulocytes and megakaryocytes. Immunosuppressive therapies, particularly cyclosporine, have demonstrated efficacy as a primary treatment. This study aims to develop a predictive model for assessing the efficacy of cyclosporine in acquired PRCA (aPRCA). This retrospective study encompasses newly treated aPRCA patients at the General Hospital of Tianjin Medical University. Diagnosis criteria include severe anemia, and absolute reticulocyte count below 10 × 109/L, with normal white blood cell and platelet counts, and a severe reduction in bone marrow erythroblasts. Cyclosporine therapy was administered, with dose adjustments based on blood concentration. Response to cyclosporine was evaluated according to established criteria. Statistical analysis involved logistic multi-factor regression, generating a predictive model. The study included 112 aPRCA patients with a median age of 63.5 years. Patients presented with severe anemia (median Hb, 56 g/L) and reduced reticulocyte levels. Eighty-six patients had no bone marrow nucleated erythroblasts. Primary PRCA accounted for 62 cases (55.4%), and secondary PRCA accounted for 50 cases (44.6%). Univariate analysis revealed that ferritin, platelet to lymphocyte ratio (PLR), and CD4/CD8 ratio influenced treatment response. Multivariate analysis further supported the predictive value of these factors. A prediction model was constructed using ferritin, PLR, and CD4/CD8 ratio, demonstrating high sensitivity and specificity. The ferritin, PLR, and CD4/CD8-based nomogram showed good predictive ability for aPRCA response to cyclosporine. This model has potential clinical value for individualized diagnosis and treatment of aPRCA patients.
Asunto(s)
Ciclosporina , Nomogramas , Aplasia Pura de Células Rojas , Humanos , Ciclosporina/uso terapéutico , Aplasia Pura de Células Rojas/tratamiento farmacológico , Aplasia Pura de Células Rojas/sangre , Persona de Mediana Edad , Femenino , Masculino , Estudios Retrospectivos , Anciano , Adulto , Inmunosupresores/uso terapéutico , Resultado del Tratamiento , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.
Asunto(s)
Insuficiencia Renal Crónica , beta Catenina , Masculino , Ratones , Animales , beta Catenina/metabolismo , Ácido Succínico/metabolismo , Liposomas/metabolismo , Ácido Clodrónico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Macrófagos/metabolismoRESUMEN
Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and ß3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.
Asunto(s)
Adipocitos Beige/fisiología , Tejido Adiposo Beige/crecimiento & desarrollo , Resistencia a la Insulina , Interleucinas/metabolismo , Macrófagos/fisiología , Agonistas de Receptores Adrenérgicos beta 3 , Animales , Frío , Homeostasis , Interleucina-4/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Proteína Desacopladora 1/fisiologíaRESUMEN
In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Fenofibrato , Serpinas , Humanos , Ratones , Animales , Glutamato-Amoníaco Ligasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Ácido Glutámico/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , CogniciónRESUMEN
BACKGROUND: This study aimed to elucidate the clinical significance and regulatory mechanism of the long non-coding RNA OIP5-AS1 in severe community-acquired pneumonia (SCAP) among paediatric patients. METHODS: qRT-PCR was used to assess the mRNA levels of OIP5-AS1. ROC curve analysis was used to assess the diagnostic significance of OIP5-AS1. Short-term prognostic significance was evaluated through Kaplan-Meier survival. An in vitro cell model was developed using LPS-induced MRC-5 cells. CCK-8, flow cytometry, and ELISA were conducted to measure cell viability, apoptosis, and inflammatory factor levels. The association between miR-150-5p and PDCD4 was confirmed through DLR assays. RESULTS: Elevated OIP5-AS1 were observed in paediatric patients with SCAP, which enabled effective differentiation from healthy individuals. High expression of OIP5-AS1 correlated with reduced survival rates. OIP5-AS1 knockdown attenuated cell viability suppression and the promotion of apoptosis and inflammatory factors induced by LPS. However, this attenuation was reversed by reduced levels of miR-150-5p. miR-150-5p was identified as a target of PDCD4 and OIP5-AS1. CONCLUSION: Increased OIP5-AS1 levels show potential as a valuable diagnostic and prognostic biomarker for paediatric patients with SCAP. This study illustrates its role in regulating cell viability, apoptosis, and the inflammatory response via the miR-150-5p/PDCD4 axis, acting as a ceRNA.
Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Infecciones Comunitarias Adquiridas , MicroARNs , Neumonía , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , ARN Largo no Codificante/genética , Infecciones Comunitarias Adquiridas/genética , Infecciones Comunitarias Adquiridas/diagnóstico , MicroARNs/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Masculino , Femenino , Apoptosis/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Niño , Neumonía/genética , Neumonía/diagnóstico , Neumonía/inmunología , Preescolar , Pronóstico , Lactante , Línea Celular , Supervivencia Celular/genética , Regulación de la Expresión Génica , Relevancia ClínicaRESUMEN
Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLß2, α4ß1, and α4ß7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLß2, α4ß1, and α4ß7 integrin activation in CD4+ T cells.
Asunto(s)
Talina , Proteínas de Unión al GTP rap1 , Animales , Sitios de Unión , Linfocitos T CD4-Positivos/metabolismo , Integrinas/metabolismo , Ratones , Talina/genética , Talina/metabolismo , Proteínas de Unión al GTP rap1/metabolismoRESUMEN
Necroptosis is a form of regulated necrosis mediated by the formation of the necrosome, composed of the RIPK1/RIPK3/MLKL complex. Here, we developed a proximity ligation assay (PLA) that allows in situ visualization of necrosomes in necroptotic cells and in vivo. Using PLA assay, we show that necrosomes can be found in close proximity to the endoplasmic reticulum (ER). Furthermore, we show that necroptosis activates ER stress sensors, PERK, IRE1α, and ATF6 in a RIPK1-RIPK3-MLKL axis-dependent manner. Activated MLKL can be translocated to the ER membrane to directly initiate the activation of ER stress signaling. The activation of IRE1α in necroptosis promotes the splicing of XBP1, and the subsequent incorporation of spliced XBP1 messenger RNA (mRNA) into extracellular vesicles (EVs). Finally, we show that unlike that of a conventional ER stress response, necroptosis promotes the activation of unfolded protein response (UPR) sensors without affecting their binding of GRP78. Our study reveals a signaling pathway that links MLKL activation in necroptosis to an unconventional ER stress response.
Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Choque Térmico/metabolismo , Necroptosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Apoptosis , Retículo Endoplásmico , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Células HT29 , Proteínas de Choque Térmico/genética , Humanos , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína 1 de Unión a la X-Box/genética , eIF-2 Quinasa/genéticaRESUMEN
Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 wk, characterized by a reduction in 24 h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the proapoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.
Asunto(s)
Diabetes Mellitus Tipo 2 , Ácido Succínico , Animales , Ratones , Apoptosis , Diabetes Mellitus Tipo 2/patología , Células Epiteliales/metabolismo , Riñón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Succinatos , Ácido Succínico/metabolismoRESUMEN
Zeins are the predominant storage proteins in maize (Zea mays) seeds, while Opaque2 (O2) is a master transcription factor for zein-encoding genes. How the activity of O2 is regulated and responds to external signals is yet largely unknown. Here, we show that the E3 ubiquitin ligase ZmRFWD3 interacts with O2 and positively regulates its activity by enhancing its nuclear localization. Ubiquitination of O2 enhances its interaction with maize importin1, the α-subunit of Importin-1 in maize, thus enhancing its nuclear localization ability. We further show that ZmRFWD3 can be phosphorylated by a Suc-responsive protein kinase, ZmSnRK1, which leads to its degradation. We demonstrated that the activity of O2 responds to Suc levels through the ZmSnRK1-ZmRFWD3-O2 signaling axis. Intriguingly, we found that Suc levels, as well as ZmRFWD3 levels and the cytonuclear distribution of O2, exhibit diurnal patterns in developing endosperm, leading to the diurnal transcription of O2-regulated zein genes. Loss of function in ZmRFWD3 disrupts the diurnal patterns of O2 cytonuclear distribution and zein biosynthesis, and consequently changes the C/N ratio in mature seeds. We therefore identify a SnRK1-ZmRFWD3-O2 signaling axis that transduces source-to-sink signals and coordinates C and N assimilation in developing maize seeds.
Asunto(s)
Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Núcleo Celular/metabolismo , Ritmo Circadiano/fisiología , Endospermo/crecimiento & desarrollo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Lisina/metabolismo , Fosforilación , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica , Serina/metabolismo , Transducción de Señal , Sacarosa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zeína/genética , Zeína/metabolismoRESUMEN
Drug discovery is a costly and time-consuming process, and most drugs exert therapeutic efficacy by targeting specific proteins. However, there are a large number of proteins that are not targeted by any drug. Recently, miRNA-based therapeutics are becoming increasingly important, since miRNA can regulate the expressions of specific genes and affect a variety of human diseases. Therefore, it is of great significance to study the associations between miRNAs and drugs to enable drug discovery and disease treatment. In this work, we propose a novel method named DMR-PEG, which facilitates drug-miRNA resistance association (DMRA) prediction by leveraging positional encoding graph neural network with layer attention (LAPEG) and multi-channel neural network (MNN). LAPEG considers both the potential information in the miRNA-drug resistance heterogeneous network and the specific characteristics of entities (i.e., drugs and miRNAs) to learn favorable representations of drugs and miRNAs. And MNN models various sophisticated relations and synthesizes the predictions from different perspectives effectively. In the comprehensive experiments, DMR-PEG achieves the area under the precision-recall curve (AUPR) score of 0.2793 and the area under the receiver-operating characteristic curve (AUC) score of 0.9475, which outperforms the most state-of-the-art methods. Further experimental results show that our proposed method has good robustness and stability. The ablation study demonstrates each component in DMR-PEG is essential for drug-miRNA drug resistance association prediction. And real-world case study presents that DMR-PEG is promising for DMRA inference.
Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Algoritmos , Redes Neurales de la Computación , Resistencia a MedicamentosRESUMEN
Metastatic colorectal cancer (mCRC) patients have poor overall survival despite using irinotecan- or oxaliplatin-based chemotherapy combined with anti-EGFR (epidermal growth factor receptor) drugs, especially those with the oncogene mutation of KRAS Metformin has been reported as a potentially novel antitumor agent in many experiments, but its therapeutic activity is discrepant and controversial so far. Inspiringly, the median survival time for KRAS-mutation mCRC patients with diabetes on metformin is 37.8 mo longer than those treated with other hypoglycemic drugs in combination with standard systemic therapy. In contrast, metformin could not improve the survival of mCRC patients with wild-type KRAS Interestingly, metformin is preferentially accumulated in KRAS-mutation mCRC cells, but not wild-type ones, in both primary cell cultures and patient-derived xenografts, which is in agreement with its tremendous effect in KRAS-mutation mCRC. Mechanistically, the mutated KRAS oncoprotein hypermethylates and silences the expression of multidrug and toxic compound extrusion 1 (MATE1), a specific pump that expels metformin from the tumor cells by up-regulating DNA methyltransferase 1 (DNMT1). Our findings provide evidence that KRAS-mutation mCRC patients benefit from metformin treatment and targeting MATE1 may provide a strategy to improve the anticancer response of metformin.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Metformina/farmacología , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metformina/uso terapéutico , Ratones , Persona de Mediana Edad , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Studies assessing relationships between neural and cognitive changes in healthy aging have shown that a variety of aspects of brain structure and function explain a significant portion of the variability in cognitive outcomes throughout adulthood. Many studies assessing relationships between brain function and cognition have utilized time-averaged, or static functional connectivity methods to explore ways in which brain network organization may contribute to aspects of cognitive aging. However, recent studies in this field have suggested that time-varying, or dynamic measures of functional connectivity, which assess changes in functional connectivity over the course of a scan session, may play a stronger role in explaining cognitive outcomes in healthy young adults. Further, both static and dynamic functional connectivity studies suggest that there may be differences in patterns of brain-cognition relationships as a function of whether or not the participant is performing a task during the scan. Thus, the goals of the present study were threefold: (1) assess whether neural flexibility during both resting as well as task-based scans is related to participant age and cognitive performance in a lifespan aging sample, (2) determine whether neural flexibility moderates relationships between age and cognitive performance, and (3) explore differences in neural flexibility between rest and task. Participants in the study were 386 healthy adults between the ages of 20-80 who provided resting state and/or task-based (Matrix Reasoning) functional magnetic resonance imaging (fMRI) scan data as part of their participation in two ongoing studies of cognitive aging. Neural flexibility measures from both resting and task-based scans reflected the number of times each node changed network assignment, and were averaged both across the whole brain (global neural flexibility) as well as within ten somatosensory/cognitive networks. Results showed that neural flexibility was not related to participant age, and that task-based global neural flexibility, as well as task-based neural flexibility in several networks, tended to be negatively related to reaction times during the Matrix Reasoning task, however these effects did not survive strict multiple comparisons correction. Resting state neural flexibility was not significantly related to either participant age or cognitive performance. Additionally, no neural flexibility measures significantly moderated relationships between participant age and cognitive outcomes. Further, neural flexibility differed as a function of scan type, with resting state neural flexibility being significantly greater than task-based neural flexibility. Thus, neural flexibility measures computed during a cognitive task may be more meaningfully related to cognitive performance across the adult lifespan then resting state measures of neural flexibility.
Asunto(s)
Envejecimiento Cognitivo/psicología , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Cognición , Femenino , Humanos , Longevidad , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa , Vías Nerviosas , Descanso , Adulto JovenRESUMEN
Protein bodies (PBs), the major protein storage organelle in maize (Zea mays) endosperm, comprise zeins and numerous nonzein proteins (NZPs). Unlike zeins, how NZPs accumulate in PBs remains unclear. We characterized a maize miniature kernel mutant, mn*, that produces small kernels and is embryo-lethal. After cloning the Mn* locus, we determined that it encodes the mitochondrial 50S ribosomal protein L10 (mRPL10). MN* localized to mitochondria and PBs as an NZP; therefore, we renamed MN* Non-zein Protein 1 (NZP1). Like other mutations affecting mitochondrial proteins, mn* impaired mitochondrial function and morphology. To investigate its accumulation mechanism to PBs, we performed protein interaction assays between major zein proteins and NZP1, and found that NZP1 interacts with 22 kDa α-zein. Levels of NZP1 and 22 kDa α-zein in various opaque mutants were correlated. Furthermore, NZP1 accumulation in induced PBs depended on its interaction with 22 kDa α-zein. Comparative proteomic analysis of PBs between wild-type and opaque2 revealed additional NZPs. A new NZP with plastidial localization was also found to accumulate in induced PBs via interaction with 22 kDa α-zein. This study thus reveals a mechanism for accumulation of NZPs in PBs and suggests a potential application for the accumulation of foreign proteins in maize PBs.
Asunto(s)
Endospermo , Zeína , Orgánulos , Proteínas de Plantas/genética , Proteómica , Semillas , Zea mays/genética , Zeína/genéticaRESUMEN
Cohesin complexes maintain sister chromatid cohesion to ensure proper chromosome segregation during mitosis and meiosis. In plants, the exact components and functions of the cohesin complex remain poorly understood. Here, we positionally cloned the classic maize (Zea mays) mutant defective kernel 15 (dek15), revealing that it encodes a homolog of SISTER CHROMATID COHESION PROTEIN 4 (SCC4), a loader subunit of the cohesin ring. Developing dek15 kernels contained fewer cells than the wild type, but had a highly variable cell size. The dek15 mutation was found to disrupt the mitotic cell cycle and endoreduplication, resulting in a reduced endosperm and embryo lethality. The cells in the dek15 endosperm and embryo exhibited precocious sister chromatid separation and other chromosome segregation errors, including misaligned chromosomes, lagging chromosomes, and micronuclei, resulting in a high percentage of aneuploid cells. The loss of Dek15/Scc4 function upregulated the expression of genes involved in cell cycle progression and stress responses, and downregulated key genes involved in organic synthesis during maize endosperm development. Our yeast two-hybrid screen identified the chromatin remodeling proteins chromatin remodeling factor 4, chromatin remodeling complex subunit B (CHB)102, CHB105, and CHB106 as SCC4-interacting proteins, suggesting a possible mechanism by which the cohesin ring is loaded onto chromatin in plant cells. This study revealed biological functions for DEK15/SCC4 in mitotic chromosome segregation and kernel development in maize.