Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 289, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970696

RESUMEN

Congenital human cytomegalovirus (HCMV) infection is a major cause of abnormalities and disorders in the central nervous system (CNS) and/or the peripheral nervous system (PNS). However, the complete pathogenesis of neural differentiation disorders caused by HCMV infection remains to be fully elucidated. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells (MSCs) with a high proliferation and neurogenic differentiation capacity. Since SHEDs originate from the neural crest of the early embryonic ectoderm, SHEDs were hypothesized to serve as a promising cell line for investigating the pathogenesis of neural differentiation disorders in the PNS caused by congenital HCMV infection. In this work, SHEDs were demonstrated to be fully permissive to HCMV infection and the virus was able to complete its life cycle in SHEDs. Under neurogenic inductive conditions, HCMV infection of SHEDs caused an abnormal neural morphology. The expression of stem/neural cell markers was also disturbed by HCMV infection. The impairment of neural differentiation was mainly due to a reduction of intracellular cholesterol levels caused by HCMV infection. Sterol regulatory element binding protein-2 (SREBP2) is a critical transcription regulator that guides cholesterol synthesis. HCMV infection was shown to hinder the migration of SREBP2 into nucleus and resulted in perinuclear aggregations of SREBP2 during neural differentiation. Our findings provide new insights into the prevention and treatment of nervous system diseases caused by congenital HCMV infection.


Asunto(s)
Diferenciación Celular , Colesterol , Infecciones por Citomegalovirus , Citomegalovirus , Células Madre Mesenquimatosas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Humanos , Colesterol/metabolismo , Colesterol/biosíntesis , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Citomegalovirus/fisiología , Citomegalovirus/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Células Madre Mesenquimatosas/citología , Células Cultivadas , Diente Primario/virología , Diente Primario/citología , Diente Primario/metabolismo , Neuronas/metabolismo , Neuronas/virología , Neurogénesis
2.
J Am Chem Soc ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982763

RESUMEN

Scattering and localization dynamics of charge carriers in the soft lattice of lead-halide perovskites impact polaron formation and recombination, which are key mechanisms of material function in optoelectronic devices. In this study, we probe the photoinduced lattice and carrier dynamics in perovskite thin films (CsFAPbX3, X = I, Br) using time-resolved infrared spectroscopy. We examine the CN stretching mode of formamidinium (FA) cations located within the lead-halide octahedra of the perovskite structure. Our investigation reveals the formation of an infrared mode due to spatial symmetry breaking within a hundred picoseconds in 3D perovskites. Experiments at cryogenic temperatures show much-reduced carrier localization, in agreement with a localization mechanism that is driven by the dynamic disorder. We extend our analysis to 2D perovskites, where the precise nature of charge carriers is uncertain. Remarkably, the signatures of charge localization we found in bulk perovskites are not observed for 2D Ruddlesden-Popper perovskites ((HexA)2FAPb2I7). This observation implies that the previously reported stabilization of free charge carriers in these materials follows different mechanisms than polaron formation in bulk perovskites. Through the exploration of heterostructures with electron/hole excess, we provide evidence that holes drive the formation of the emerging infrared mode.

3.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297486

RESUMEN

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Asunto(s)
Traumatismos de las Arterias Carótidas , Músculo Liso Vascular , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Plaquetas/metabolismo , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Hiperplasia/complicaciones , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/complicaciones , Neointima/metabolismo , Neointima/patología
4.
Biochem Biophys Res Commun ; 702: 149654, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340657

RESUMEN

Accumulating evidence underscores the pivotal role of envelope proteins in viral secondary envelopment. However, the intricate molecular mechanisms governing this phenomenon remain elusive. To shed light on these mechanisms, we investigated a Golgi-retained gD of EHV-1 (gDEHV-1), distinguishing it from its counterparts in Herpes Simplex Virus-1 (HSV-1) and Pseudorabies Virus (PRV). To unravel the specific sequences responsible for the Golgi retention phenotype, we employed a gene truncation and replacement strategy. The results suggested that Golgi retention signals in gDEHV-1 exhibiting a multi-domain character. The extracellular domain of gDEHV-1 was identified as an endoplasmic reticulum (ER)-resident domain, the transmembrane domain and cytoplasmic tail (TM-CT) of gDEHV-1 were integral in facilitating the protein's residence within the Golgi complex. Deletion or replacement of either of these dual domains consistently resulted in the mutant gDEHV-1 being retained in an ER-like structure. Moreover, (TM-CT)EHV-1 demonstrated a preference for binding to endomembranes, inducing the generation of a substantial number of vesicles, potentially originate from the Golgi complex or the ER-Golgi intermediate compartment. In conclusion, our findings provide insights into the intricate molecular mechanisms governing the Golgi retention of gDEHV-1, facilitating the comprehension of the processes underlying viral secondary envelopment.


Asunto(s)
Herpesvirus Équido 1 , Proteínas del Envoltorio Viral , Animales , Caballos , Proteínas del Envoltorio Viral/química , Herpesvirus Équido 1/metabolismo , Aparato de Golgi/metabolismo , Retículo Endoplásmico/metabolismo , Dominios Proteicos
5.
J Med Virol ; 96(6): e29731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888065

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is associated with a high death rate and lacks a targeted therapy plan. The ratio of blood urea nitrogen to albumin, known as BAR, is a valuable method for assessing the outlook of various infectious diseases. The objective of this research was to evaluate the effectiveness of BAR in forecasting the outcome of individuals with SFTS. Four hundred and thirty-seven patients with SFTS from two clinical centers were included in this study according to inclusion and exclusion criteria. Clinical characteristics and test parameters of SFTS patients were analyzed between survival and fatal groups. Least absolute shrinkage and selection operator (LASSO) regression and Cox regression suggested that BAR might serve as a standalone prognostic indicator for patients with SFTS in the initial phase (hazard ratio = 18.669, 95% confidence interval [CI]: 8.558-40.725, p < 0.001). And BAR had a better predictive effectiveness in clinical outcomes in patients with SFTS with an AUC of 0.832 (95% CI: 0.788-0.876, p < 0.001), a cutoff value of 0.19, a sensitivity of 0.812, and a specificity of 0.726 compared to C-reactive protein, procalcitonin, and platelet to lymphocyte ratio via receiver operating characteristic curve. KM (Kaplan Meier) curves demonstrated that high level of BAR was associated with poor survival condition in patients with SFTS. Furthermore, the high level of BAR was associated with long hospital stays and test paraments of kidney, liver, and coagulation function in survival patients. So, BAR could be used as a promising early warning biomarker of adverse outcomes in patients with SFTS.


Asunto(s)
Nitrógeno de la Urea Sanguínea , Síndrome de Trombocitopenia Febril Grave , Humanos , Femenino , Masculino , Persona de Mediana Edad , Síndrome de Trombocitopenia Febril Grave/mortalidad , Síndrome de Trombocitopenia Febril Grave/sangre , Síndrome de Trombocitopenia Febril Grave/diagnóstico , Síndrome de Trombocitopenia Febril Grave/virología , Anciano , Pronóstico , Biomarcadores/sangre , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años
6.
Mol Phylogenet Evol ; 190: 107968, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000707

RESUMEN

Patellogastropoda, the true limpets, is a major group of gastropods widely distributed in marine habitats from the intertidal to deep sea. Though important for understanding their evolutionary radiation, the phylogenetic relationships among the patellogastropod families have always been challenging to reconstruct, with contradictory results likely due to insufficient sampling. Here, we obtained mitogenomic and phylogenomic data (transcriptomic or genomic) from six species representing the three predominantly deep-water patellogastropod families: Lepetidae, Neolepetopsidae, and Pectinodontidae. By using various phylogenetic methods, we show that mitogenome phylogeny recovers monophyly of eight families in most of the trees, though the relationships among families remain contentious. Meanwhile, a more robust family-level topology consistent with morphology was achieved by phylogenomics. This also reveals that these mainly deep-water families are monophyletic, suggesting a single colonisation of the deep water around the Jurassic. We also found a lack of significant correlation between genome size and habitat depth, despite some deep-water species exhibiting larger genome sizes. Our phylogenomic tree provides a stable phylogenetic backbone for Patellogastropoda that includes seven of the nine recognized families and paves the way for future evolutionary analyses in this major group of molluscs.


Asunto(s)
Evolución Biológica , Gastrópodos , Humanos , Animales , Filogenia , Genómica , Gastrópodos/genética , Tamaño del Genoma
7.
Mol Psychiatry ; 28(9): 3955-3965, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37798418

RESUMEN

Diabetic patients receiving the antidiabetic drug metformin have been observed to exhibit a lower prevalence of anxiety disorders, yet the precise mechanism behind this phenomenon is unclear. In our study, we found that anxiety induces a region-specific reduction in AMPK activity in the medial prefrontal cortex (mPFC). Concurrently, transgenic mice with brain-specific AMPK knockout displayed abnormal anxiety-like behaviors. Treatment with metformin or the overexpression of AMPK restored normal AMPK activity in the mPFC and mitigated social stress-induced anxiety-like behaviors. Furthermore, the specific genetic deletion of AMPK in the mPFC not only instigated anxiety in mice but also nullified the anxiolytic effects of metformin. Brain slice recordings revealed that GABAergic excitation and the resulting inhibitory inputs to mPFC pyramidal neurons were selectively diminished in stressed mice. This reduction led to an excitation-inhibition imbalance, which was effectively reversed by metformin treatment or AMPK overexpression. Moreover, the genetic deletion of AMPK in the mPFC resulted in a similar defect in GABAergic inhibitory transmission and a consequent hypo-inhibition of mPFC pyramidal neurons. We also generated a mouse model with AMPK knockout specific to GABAergic neurons. The anxiety-like behaviors in this transgenic mouse demonstrated the unique role of AMPK in the GABAergic system in relation to anxiety. Therefore, our findings suggest that the activation of AMPK in mPFC inhibitory neurons underlies the anxiolytic effects of metformin, highlighting the potential of this primary antidiabetic drug as a therapeutic option for treating anxiety disorders.


Asunto(s)
Ansiolíticos , Metformina , Humanos , Ratones , Animales , Ansiolíticos/farmacología , Proteínas Quinasas Activadas por AMP/farmacología , Metformina/farmacología , Hipoglucemiantes/farmacología , Corteza Prefrontal , Neuronas GABAérgicas
8.
Neurochem Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862726

RESUMEN

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.

9.
Photochem Photobiol Sci ; 23(3): 575-585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38386257

RESUMEN

Our main focus is to explore the atomic electronegativity-dependent photoinduced behavior of styryl derivatives (HBO, HBS, and HBSe). The results of structural parameter calculation by the DFT method show that the intramolecular hydrogen bonds of normal and tautomer form are strengthened and weakened, respectively, in an excited state (S1), which is conducive to the excited intramolecular proton transfer (ESIPT) process. The enhancement of excited hydrogen bond is beneficial to the ESIPT process from the aspects of infrared vibration frequency (IR), Mulliken's charge analysis, and density gradient reduction (RDG). Additionally, by determining the bond energy with the band critical point (BCP) parameter, we found that the lower the electronegativity of the atom, the larger the hydrogen bond strength at the excited state and the more likely ESIPT reaction occurs. Meanwhile, the intramolecular H-bonds O-H…N in HBO, HBS, and HBSe are enhanced with the weakened electron-withdrawing capacity of the atom (from O to S and Se). Subsequently, frontier molecular orbital (FMOs) and charge density difference (CDD) analyses essentially revealed that electron redistribution induces the ESIPT process. Low atomic electronegativity exhibits the high chemical activity of the excited state. Furthermore, to demonstrate the electronegativity-dependent ESIPT behavior of the system, we built potential energy curves (PECs) and located the transition states (TS) of proton transfer processes.

10.
Physiol Plant ; 176(2): e14284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618747

RESUMEN

Konjac species (Amorphophallus spp.) are the only plant species in the world that are rich in a large amount of konjac glucomannan (KGM). These plants are widely cultivated as cash crops in tropical and subtropical countries in Asia, including China. Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most destructive bacterial pathogens of konjac. Here, we analyzed the interactions between Pcc and susceptible and resistant konjac species from multiple perspectives. At the transcriptional and metabolic levels, the susceptible species A. konjac and resistant species A. muelleri exhibit similar molecular responses, activating plant hormone signaling pathways and metabolizing defense compounds such as phenylpropanoids and flavonoids to resist infection. Interestingly, we found that Pcc stress can lead to rapid recombination of endophytic microbial communities within a very short period (96 h). Under conditions of bacterial pathogen infection, the relative abundance of most bacterial communities in konjac tissue decreased sharply compared with that in healthy plants, while the relative abundance of some beneficial fungal communities increased significantly. The relative abundance of Cladosporium increased significantly in both kinds of infected konjac compared to that in healthy plants, and the relative abundance in resistant A. muelleri plants was greater than that in susceptible A. konjac plants. Among the isolated cultivable microorganisms, all three strains of Cladosporium strongly inhibited Pcc growth. Our results further elucidate the potential mechanism underlying konjac resistance to Pcc infection, highlighting the important role of endophytic microbial communities in resisting bacterial pathogen infections, especially the more direct role of fungal communities in inhibiting pathogen growth.


Asunto(s)
Micobioma , Pectobacterium , Productos Agrícolas , China , Flavonoides
11.
Bioorg Med Chem ; 108: 117787, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838580

RESUMEN

19 derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides (H1-H19) and 5 derivatives of 1-benzyl-5-arylpyrazole-3-carboxamides (J1-J5) have been designed and synthesized as potential negative allosteric modulators (NAMs) for the ß2-adrenergic receptor (ß2AR). The new pyrazole derivatives were screened on the classic G-protein dependent signaling pathway at ß2AR. The majority of 1-benzyl-3-aryl-pyrazole-5-carboxamide derivatives show more potent allosteric antagonistic activity against ß2AR than Cmpd-15, the first reported ß2AR NAM. However, the 1-benzyl-5-arylpyrazole-3-carboxamide derivatives exhibit very poor or even no allosteric antagonistic activity for ß2AR. Furthermore, the active pyrazole derivatives have relative better drug-like profiles than Cmpd-15. Taken together, we discovered a series of derivatives of 1-benzyl-3-arylpyrazole-5-carboxamides as a novel scaffold of ß2AR NAM.


Asunto(s)
Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Regulación Alostérica/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Estructura Molecular , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/síntesis química
12.
Med Sci Monit ; 30: e943414, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937949

RESUMEN

BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is linked to high mortality rates and an unfavorable prognosis. Early identification of patients with poor prognosis is crucial. This study aimed to investigate the relationship between the systemic immune-inflammation index (SII) and mortality in this specific patient population. MATERIAL AND METHODS This retrospective cohort study used data from the Medical Information Mart for Intensive Care IV database. Data on patient demographics, comorbidities, vital signs, laboratory parameters, treatment usage, acute kidney injury staging, and renal replacement therapy were collected within 48 h of intensive care unit admission. Restricted cubic splines, Kaplan-Meier curves, and Cox regression models were used for analysis. Stratified analyses were performed on the basis of various factors. RESULTS In total, 7856 patients were included, with a median age of 66.9 years and a male-to-female ratio of 57.7%-42.3%. A J-shaped relationship was observed between SII and mortality risk. The lowest mortality risk occurred at an SII of 760.078×109/L. Compared to the reference group (second quartile of SII), the highest and third quartiles had increased 28-day mortality risk, with adjusted hazard ratios (HRs) of 1.33 (1.16-1.52) and 1.55 (1.36-1.77), respectively. Although a trend towards higher mortality hazard was observed in the lowest SII group (Q1), it was not statistically significant, with an adjusted HR of 1.15 (1-1.32). CONCLUSIONS In patients with SA-AKI, both low and high SII were associated with increased short-term mortality risk. The lowest mortality risk was observed at an SII of 760.078×109/L within a 28-day period.


Asunto(s)
Lesión Renal Aguda , Inflamación , Unidades de Cuidados Intensivos , Sepsis , Humanos , Masculino , Femenino , Estudios Retrospectivos , Sepsis/mortalidad , Sepsis/complicaciones , Sepsis/inmunología , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/inmunología , Anciano , Persona de Mediana Edad , Pronóstico , Inflamación/complicaciones , Factores de Riesgo , Modelos de Riesgos Proporcionales , Estimación de Kaplan-Meier
13.
Med Teach ; : 1-13, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796737

RESUMEN

PURPOSE: Radiology instruction focuses on cultivating medical students' diagnostic thinking skills and practical competence, and lecture-based learning (LBL) is the most commonly used teaching approach. While fact-based, this type of traditional instruction is often non-engaging, leading to a shift toward student-centered models, one of which is the flipped classroom (FC). However, studies involving a comprehensive evaluation of students' experiences using the FC approach and its effects on their learning are lacking. Therefore, this study analyzed the teaching efficacy of the FC approach based on data of large groups of radiology students, accumulated over time. METHODS: Data from 636 medical radiology students taught using the FC and LBL models from 2012 to 2021 were retrospectively collected and analyzed. RESULTS: The test scores of the FC group were significantly higher than those of the LBL group, and improvements in learning initiative and learning ability were notably higher in the FC than in the LBL group. The two groups showed no significant difference in the critical thinking disposition indicator, and the proportion of students with positive critical thinking tendencies was higher in the FC than in the LBL group. The academic and social self-perception scores of the FC group were significantly higher than those of the LBL group, and there was a significant difference in Kolb's learning style. CONCLUSIONS: Based on evidence of completing pre-, in-, and after-class work, the FC approach improved students' academic performance, learning initiative, diagnostic ability, and satisfaction with learning and the teaching institution. Our findings suggest that FC instruction promotes students' assimilation and convergence of learning styles, and cultivates positive critical thinking.

14.
Int J Phytoremediation ; 26(7): 1117-1132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38099523

RESUMEN

Little information is available on the influence of the compound use of intercropping (IN) and arbuscular mycorrhizal fungus (AMF) on Cd accumulation and the expression of Cd transporter genes in two intercropped plants. A pot experiment was conducted to study the influences of IN and AMF-Glomus versiforme on growth and Cd uptake of two intercropped plants-maize and Cd hyperaccumulator Sphagneticola calendulacea, and the expression of Cd transporter genes in maize in Cd-polluted soils. IN, AMF and combined treatments of IN and AMF (IN + AMF) obviously improved biomass, photosynthesis and total antioxidant capacities of two plants. Moreover, single and compound treatments of IN and AMF evidently reduced Cd contents in maize, and the greatest decreases appeared in the compound treatment. However, Cd contents of S. calendulacea in IN, AMF and IN + AMF groups were notably improved. Furthermore, the single and compound treatments of IN and AMF significantly downregulated the expression levels of Nramp1, HMA1, ABCC1 and ABCC10 in roots and leaves, and the largest decreases were observed in the combined treatment. Our work first revealed that the combined use of IN and AMF appeared to have a synergistic effect on decreasing Cd content by downregulating the expression of Cd transporter genes in maize.


Asunto(s)
Biodegradación Ambiental , Cadmio , Micorrizas , Contaminantes del Suelo , Zea mays , Zea mays/metabolismo , Zea mays/microbiología , Micorrizas/fisiología , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Glomeromycota/fisiología , Asteraceae/metabolismo
15.
Molecules ; 29(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474493

RESUMEN

Trace ethylene poses a significant challenge during the storage and transportation of agricultural products, causing over-ripening, reducing shelf life, and leading to food waste. Zeolite-supported silver adsorbents show promise for efficiently removing trace ethylene. Herein, hierarchical Ag/NZ5(X) adsorbents were prepared via different ammonia modifications, which featured enhanced ethylene adsorption ability. Ag/NZ5(2.5) exhibited the largest capacity and achieved near-complete removal at room temperature with prolonged efficacy. Characterization results indicated that the ammonia modification led to the formation of a hierarchical structure in the zeolite framework, reducing diffusion resistance and increasing the accessibility of the active sites. Additionally, desilication effects increased the defectiveness, generating a stronger metal-support interaction and resulting in a higher metal dispersion rate. These findings provide valuable insights into the development of efficient adsorbents for removing trace ethylene, thereby reducing food waste and extending the shelf life of agricultural products.

16.
Sheng Li Xue Bao ; 76(2): 346-352, 2024 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-38658383

RESUMEN

Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.


Asunto(s)
Asma , Antígeno B7-H1 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Asma/inmunología , Lesión Pulmonar Aguda/inmunología , Inflamación/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/metabolismo , Animales
17.
Biochem Biophys Res Commun ; 683: 149079, 2023 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-37871447

RESUMEN

BACKGROUND: Several studies have investigated the detection of plasma cell-free DNA (cfDNA) using metagenomic next-generation sequencing (mNGS). However, to our knowledge, no study has evaluated the diagnostic value of mNGS detection using blood cells. In this study, we aimed to evaluate the performance of a whole blood mNGS assay which includes the results of plasma and blood cells mNGS detection. METHODS: We selected a panel of seven microorganisms to validate both the plasma and blood cells assay for their limits of detection (LoD), linearity, precision, and robustness to interference. In a multicentered prospective study conducted from January 2021 to April 2022, we tested 253 septic patients with plasma and blood cells mNGS and compared it with blood cultures (BCs). The performance of pathogen detection was compared between mNGS and BCs. RESULTS: The LoD for plasma and blood cells mNGS was 8.3-140 genome equivalents (GE)/mL and 26 to 534 colony-forming units (CFU) or copies/mL, respectively. The inter- and intra-assay reproducibility of both plasma and blood cells mNGS was 100%. Compared to plasma mNGS alone, the sensitivity of whole blood mNGS was increased by 18.04% when using BCs as the standard (67.21% vs 85.25%). Furthermore, the sensitivity of whole blood mNGS in diagnosing bloodstream infections (BSIs) was 85.21%, which was significantly higher than that of BCs (36.09%, P<0.0001) and plasma mNGS (69.82%; P = 0.0007). Additional analysis showed that blood cells mNGS was able to detect bacteria missed by plasma mNGS, while plasma mNGS was effective at detecting viruses. CONCLUSIONS: Our findings indicate that whole blood mNGS shows great potential as a promising diagnostic technique for BSIs owing to its ability to identify pathogens with higher sensitivity.


Asunto(s)
Sepsis , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Sepsis/diagnóstico , Células Sanguíneas , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Sensibilidad y Especificidad
18.
Anal Biochem ; 666: 115077, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754136

RESUMEN

The gold nanobipyramids (Au NBPs) are widely used in the analytical detection of biochemistry due to their unique localized surface plasmon resonance (LSPR) properties. In our developed approach, I- in kelp was detected by etching Au NBPs in the presence of IO3-. Under acidic conditions, IO3- reacted rapidly with I- to form I2, subsequently I2 reacted with I- to form the intermediate I3-. In the presence of CTAB, Au NBPs were etched by I2 derived from I3-, resulting in a decrease in the aspect ratio of Au NBPs, to form a significant blue shift of LSPR longitudinal peak and color variation of colloid which changed from blue-green to magenta and could be employed to quantitatively detect the concentration of I- with the naked eye. A linear relationship can be found between the LSPR peak changes with the I- concentration in a wide range from 4.0 µM to 15.0 µM, and the sensitive limit of detection (LOD) was 0.2 µM for UV-vis spectroscopy and the obvious color changes with a visual LOD was 4.0 µM for the naked eye. Benefiting from the high specificity, the proposed colorimetric detection of I- in kelp samples was achieved, indicating the available potential of the colorimetric detection for the determination of I- in real samples. What's more, this detection procedure was time-saving and could avoid tedious procedures.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Colorimetría/métodos , Yoduros , Oro/química , Resonancia por Plasmón de Superficie/métodos , Límite de Detección , Nanopartículas del Metal/química
19.
J Neurooncol ; 164(1): 127-139, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37462801

RESUMEN

BACKGROUND: Glioma is the most malignant primary brain tumor with a poor survival time. The tumour microenvironment, especially glioma-associated microglia/macrophages (GAMs), plays an important role in the pathogenesis of glioma. Currently, microglia (CD11b+/CD45Low) and macrophages (CD11b+/CD45High) are distinguished as distinct cell types due to their different origins. Moreover, signal-transducing adaptor protein 1 (STAP1) plays a role in tumourigenesis and immune responses. However, to date, no studies have been reported on STAP1 in GAMs. METHODS: The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases were used to investigate the association between STAP1 mRNA levels and clinical parameters (grades, mutations in isocitrate dehydrogenase, and overall survival). RNA-sequencing, qRT-PCR, Western blotting, immunohistochemistry and immunofluorescence analyses were performed to detect the expression level of STAP1 and related proteins. BV-2 cells were used to construct a STAP1-overexpressing cell line. Phagocytosis of BV-2 cells was assessed by flow cytometry and fluorescence microscopy. C57BL/6 mice were used to establish orthotopic and subcutaneous glioma mouse models. Glioma growth was monitored by bioluminescence imaging. RESULTS: STAP1 expression in glioma-associated microglia is positively correlated with the degree of malignancy and poor prognosis of glioma. Moreover, STAP1 may promote M2-like polarisation by increasing ARG1 expression and inhibiting microglial phagocytosis of microglia. Increased ARG1 may be associated with the IL-6/STAT3 pathway. Impaired phagocytosis may be associated with decreased cofilin and filopodia. CONCLUSION: STAP1 is positively associated with the degree of glioma malignancy and may represent a potential novel therapeutic target for glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ratones , Animales , Microglía , Línea Celular Tumoral , Ratones Endogámicos C57BL , Glioma/metabolismo , Macrófagos , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
20.
Physiol Plant ; 175(3): e13914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37072650

RESUMEN

Hydrangea (Hydrangea arborescens var. "Annabelle") flowers are composed of sweet aroma sepals rather than true petals and can change color. Floral volatiles plays important roles in plants, such as attracting pollinators, defending against herbivores, and signaling. However, the biosynthesis and regulatory mechanisms underlying fragrance formation in H. arborescens during flower development remain unknown. In this study, a combination of metabolite profiling and RNA sequencing (RNA-seq) was employed to identify genes associated with floral scent biosynthesis mechanisms in "Annabelle" flowers at three developmental stages (F1, F2, and F3). The floral volatile data revealed that the "Annabelle" volatile profile includes a total of 33 volatile organic compounds (VOCs), and VOCs were abundant during the F2 stage of flower development, followed by the F1 and F3 stages, respectively. Terpenoids and benzenoids/phenylpropanoids were abundant during the F2 and F1 stages, with the latter being the most abundant, whereas fatty acid derivatives and other compounds were found in large amounts during the F3 stage. According to ultra-performance liquid chromatography-tandem mass spectrometer analysis, benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls play a significant role in the floral metabolite profile. The transcriptome data revealed a total of 17,461 differentially expressed genes (DEGs), with 7585, 12,795, and 9044 DEGs discovered between the F2 and F1, F3 and F1, and F2 and F3 stages, respectively. Several terpenoids and benzenoids/phenylpropanoids biosynthesis-related DEGs were identified, and GRAS/bHLH/MYB/AP2/WRKY were more abundant among transcription factors. Finally, DEGs interlinked with VOCs compounds were determined using Cytoscape and k-means analysis. Our results pave the way for the discovery of new genes, critical data for future genetic studies, and a platform for the metabolic engineering of genes involved in the production of Hydrangea's signature floral fragrance.


Asunto(s)
Hydrangea , Hydrangea/genética , Hydrangea/metabolismo , Odorantes , Perfilación de la Expresión Génica/métodos , Terpenos/metabolismo , Transcriptoma , Metaboloma , Flores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA