Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; 19(31): e2205291, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36635000

RESUMEN

Fabricating polymer electrolyte membranes (PEMs) simultaneously with high ion conductivity and selectivity has always been an ultimate goal in many membrane-integrated systems for energy conversion and storage. Constructing broader ion-conducting channels usually enables high-efficient ion conductivity while often bringing increased crossover of other ions or molecules simultaneously, resulting in decreased selectivity. Here, the ultra-small carbon dots (CDs) with the selective barriers are self-assembled within proton-conducting channels of PEMs through electrostatic interaction to enhance the proton conductivity and selectivity simultaneously. The functional CDs regulate the nanophase separation of PEMs and optimize the hydration proton network enabling higher-efficient proton transport. Meanwhile, the CDs within proton-conducting channels prevent fuel from permeating selectively due to their repelling and spatial hindrance against fuel molecules, resulting in highly enhanced selectivity. Benefiting from the improved conductivity and selectivity, the open-circuit voltage and maximum power density of the direct methanol fuel cell (DMFC) equipped with the hybrid membranes raised by 23% and 93%, respectively. This work brings new insight to optimize polymer membranes for efficient and selective transport of ions or small molecules, solving the trade-off of conductivity and selectivity.

2.
J Chem Phys ; 159(12)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-38127373

RESUMEN

How to fabricate perpendicularly oriented domains (PODs) of lamellar and cylinder phases in block copolymer thin films remains a major challenge. In this work, via a coarse-grained molecular dynamics simulation study, we report a solvent evaporation strategy starting from a mixed solution of A-b-B-type diblock copolymers (DBCs) and single-chain nanoparticles (SCNPs) with the same composition, which is capable of spontaneously generating PODs in drying DBC films induced by the interface segregation of SCNPs. The latter occurs at both the free surface and substrate and, consequently, neutralizes the interface selectivity of distinct blocks in DBCs, leading to spontaneous formation of PODs at both interfaces. The interface segregation of SCNPs is related to the weak solvophilicity of the internal cross-linker units. A mean-field theory calculation demonstrates that the increase in the chemical potential of SCNPs in the bulk region drives their interface segregation along with solvent evaporation. We believe that such a strategy can be useful in regulating the PODs of DBC films in practical applications.

3.
Soft Matter ; 19(1): 128-136, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36477470

RESUMEN

Polar groups have long been recognized to greatly influence the glass transition temperature (Tg) of polymers, but understanding the underlying physical mechanism remains a challenge. Here, we study the glass formation of ring-opening metathesis polymerization (ROMP) copolymers containing polar groups by employing all-atom molecular dynamics simulations. We show that although the number of hydrogen bonds (NHB) and the cohesive energy density increase linearly as the content of polar groups (fpol) increases, the Tg of ROMP copolymers increases with the increase of fpol in a nonlinear fashion, and tends to plateau for sufficiently high fpol. Importantly, we find that the increase rate of Gibbs free energy for HB breaking gradually slows down with the increase of fpol, indicating that the HB is gradually stabilized. Therefore, Tg is jointly determined by NHB and the strength of HBs in the system, while the latter dominates. Although NHB increases linearly with increasing fpol, the HB strength increases slowly with increasing fpol, which leads to a decreasing rate of increase in Tg.

4.
J Am Chem Soc ; 143(50): 21433-21442, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34886669

RESUMEN

Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.

5.
Soft Matter ; 17(24): 5897-5906, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34037067

RESUMEN

We use coarse-grained molecular dynamics simulations to study the self-assembly behavior of polyoxometalate (POM) nanoparticles (NPs) decorated with mobile polymer ligands under melt conditions. We demonstrate that due to the mobile nature of the grafted ligands on the NP surface, NPs have the ability to expose a part of their surfaces, leading to a block-copolymer-like self-assembly behavior. The exposed NP surface serves as one block and the grafted ligand polymers as another. This system has a strong ability to self-assemble into long-range ordered structures such as block copolymers due to large incompatibility between POM and ligand polymers, i.e., POM NPs can form lamellar, cylindrical, and spherical structures, which are consistent with previous experimental results. More importantly, these ordered structures are on the sub-10 nm scale, which is an important requirement for many applications. At low graft density, we find a new inverse-cylindrical structure formation where polymers form cylinders and POMs form a continuous network structure. A full self-assembly phase diagram is constructed which illustrates rules to manipulate the self-assembly structures of NPs decorated with mobile polymer ligands. We hope that these computational results will be useful for the new design of nanostructures with improved optical or electronic functions.

6.
J Chem Phys ; 155(5): 054901, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34364327

RESUMEN

By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.

7.
Macromol Rapid Commun ; 41(24): e1900655, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32134543

RESUMEN

Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by intramolecular crosslinking of isolated single polymer chains. Syntheses of such SCNPs usually need to be performed in a dilute solution. In such a condition, the bonding probability of the two active crosslinking units at a short contour distance along the chain backbone is much higher than those which are far away from each other. Such a reaction condition often results in local spheroidization and, therefore, the formation of loosely packed structures. How to inhibit the local spheroidization and improve the compactness of SCNPs is thus a major challenge for the syntheses of SCNPs. In this study, computer simulations are performed and the fact that a precollapse of the polymer chain conformation in a cosolvent condition can largely improve the probability of the crosslinking reactions at large contour distances is demonstrated, favoring the formations of closely packed globular structures. As a result, the formed SCNPs can be more spherical and have higher compactness than those fabricated in ultradilute good solvent solution in a conventional way. It is believed this simulation work can provide a insight into the effective syntheses of SCNPs with spherical conformations and high compactness.


Asunto(s)
Nanopartículas , Polímeros , Simulación por Computador , Solventes
8.
Phys Chem Chem Phys ; 22(20): 11400-11408, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32374336

RESUMEN

We study the interfacial structure and dynamics of a polymer nanocomposite (PNC) composed of octaaminophenyl polyhedral oligomeric silsesquioxane (OAPS) and poly(2-vinylpyridine) (P2VP) by performing full atomistic molecular dynamics simulations. There are eight aminophenyl groups grafted on the surface of the OAPS particle and the particle has a size comparable to the Kuhn segment of P2VP. These aminophenyl groups can form hydrogen bonds (HBs) with pyridine rings from surrounding P2VP chains. We found that OAPS can form ∼2 HBs on average with surrounding polymer chains. The effect of the HBs is investigated in detail by either switching on or off these HBs in our simulation. By analyzing the interfacial static packing structure and dynamic properties, we demonstrate that the system has an ∼1 nm interface width, similar to the OAPS particle size. We also found that HBs can prevent the further penetration of polymers into the inner zone (grafting layer) of the OAPS, and therefore keep the P2VP chains in the outer layer (>1 nm), remaining bulk-like, which is well consistent with experimental results. In addition, we found that NP diffusion is coupled to the absorbed polymer chains, which also dramatically slows down the diffusion of polymer segments in return. The core-shell model in which the NP and absorbed polymers diffuse as a single object is validated here at the full atomistic level. These results provide atomistic insights into the unique structure and dynamics in the small attractive NP-polymer interfacial region. We hope these results will be helpful for the understanding of peculiar phenomena in attractive polymer nanocomposites containing small NPs.

9.
Soft Matter ; 15(22): 4476-4485, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31111851

RESUMEN

In polymer/nanoparticle composite (PNC) thin films, polymer chains experience strong confinement effects not only at the free surface area but also from nanoparticles (NPs). In this work, the influence of NP-polymer interaction and NP distribution on the polymer segmental dynamics and the glass transition behavior of PNC free-standing films are investigated through molecular dynamics simulations. We demonstrate that NPs will migrate to the film surface area and form an NP-concentrated layer when NP-polymer interactions are weak, while NPs are well dispersed in the bulk region when NP-polymer interactions are strong. In both cases, we find increases in the glass transition temperature Tg compared with the pure film without NPs, although with a different degree. The weakly interacting system has the same Tg as the pure bulk system without NPs. The NP layer formed at the surface area reduces both the mobility of the surface polymer beads and the mobility gradient in the film normal direction (MGFND), therefore resulting in an increase in the Tg which highlights the vital role of the mobile surface layer. In contrast, the NPs in the bulk region enlarge the MGFND. NPs have opposite influences on the polymer bead dynamic anisotropy when they interact weakly or strongly with polymers, weakened for the former and enhanced for the latter. These findings offer a clear picture of the segmental dynamics and glass transition behavior in free-standing PNC films with different NP-polymer interaction strengths. We hope these results will be helpful for the property design of related materials.

10.
Phys Chem Chem Phys ; 21(28): 15888-15898, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31287116

RESUMEN

Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.

11.
Phys Chem Chem Phys ; 21(13): 7115-7126, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30883633

RESUMEN

It is widely accepted that adding nanoparticles (NPs) into polymer matrices can dramatically alter the mechanical properties of the material, and that the properties at the NP/polymer interface play a vital role. By performing coarse-grained molecular dynamics simulations, we study the stress-strain behaviour of polymer/NP composites (PNCs) in a glassy state under a triaxial tensile deformation, in which the NPs are well dispersed in the system via bimodal grafting. A 'HOMO' system, in which the short grafted chains are chemically identical to the matrix polymer, and a 'HETERO' system, in which the short grafted chains interact weakly with the matrix, are investigated. Our simulations demonstrate that the HOMO system behaves very similarly to the pure polymer system, with quick cavitation and a drop in stress after the yielding point, corresponding to a craze deformation process. While in the HETERO system, weak interactions between the short grafts and the matrix polymer induce a low local modulus, therefore, rather homogeneous void formation and consequently a slower cavitation process are observed at the surface of the well dispersed NPs during the tensile deformation. As a result, the depletion effect at the NP surface eventually leads to NP re-assembly at large strains. Moreover, the HETERO system undergoes a shear-deformation-tended tensile process rather than the craze deformation found in the HOMO system. At the same time, the HETERO system is more ductile, with a much slower drop in stress after yielding than the HOMO system. In addition, the homogeneous generation of voids at small strain in the HETERO system can be utilized in the fabrication of polymer films with desirable separation abilities for gases or small molecules. We hope that these simulation results will be helpful for the property regulation of PNC materials containing polymer grafted NPs.

12.
Phys Chem Chem Phys ; 21(3): 1417-1427, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30601534

RESUMEN

Patchy nanoparticles (PNPs) have received increased attention since they serve as a new type of self-assembly unit. However, the precise synthesis of PNPs with target patch numbers and their spatial distribution on a nanoparticle (NP) surface are still a formidable challenge. A recent experimental study [R. M. Choueiri et al., Nature, 2016, 538, 79] has demonstrated that following a change in the solvent quality, the collapse and thermodynamically driven segregation of the grafted homopolymer (HP) chains on the NP surface can lead to the formation of surface-pinned micelles, and therefore, PNPs. In this study, by using coarse-grained molecular dynamics simulations, we demonstrate that the collapse of the grafted diblock copolymer (DBC) chains on the NP surface can also lead to the formation of PNPs, but in a more controllable manner with target patch numbers and symmetric surface distribution. In addition, our studies have shown that PNPs formed from the collapse of surface-grafted DBC chains are superior to those formed from the collapse of HP chains. We have shown that the use of DBC can generate more spherical patches than that using HP. More importantly, grafting DBC chains on the NP surface offers a larger adjustable parameter space due to their distinct properties, tunable volume fractions of the two blocks, and the different interaction types with the NP surface. In addition, solvent-phobicity and the sequence of collapsing of each block can also be utilized to control the formation pathway of the PNP structures.

13.
Phys Chem Chem Phys ; 21(24): 13258-13267, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31183479

RESUMEN

Vitrimers with dynamic covalent bonds make thermosetting materials plastic, recyclable and self-repairing, and have broad application prospects. However, due to the complex composition of vitrimers and the dynamic bond exchange reactions (BERs), the mechanism behind their unique dynamic behavior is not fully understood. We used the hybrid molecular dynamics-Monte Carlo (MD-MC) algorithm to establish a molecular dynamics model that can accurately reflect BERs, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system. The simulation results show that BERs change the diffusion mode of the vitrimer's constituent molecules, which in turn affects the BER and other relaxation dynamics. This provides a theoretical basis and a specific method for the rational design of the rheological properties of vitrimers.

14.
Angew Chem Int Ed Engl ; 58(6): 1659-1663, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30506965

RESUMEN

Since the discovery of amorphous red phosphorus (a-red P) in 1847, many possible structures have been proposed. However, the exact molecular structure has not yet been determined because of its amorphous nature. Herein several methods are used to investigate basic properties of a-red P. Data from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that a-red P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical single-molecule elasticities of the possible a-red P structures are obtained by quantum mechanical (QM) calculations. The experimental single-molecule elasticity of a-red P measured by single-molecule AFM matches with the theoretical result of the zig-zag ladder structure, indicating that a-red P may adopt this structure. Although this conclusion needs further validation, this fundamental study represents progress towards solving the structure of a-red P. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.

15.
Phys Chem Chem Phys ; 20(32): 20996-21007, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30070283

RESUMEN

The dynamics of nanorods (NRs) in complex liquids is important, not only for new material design and for understanding complex phenomena in biological systems, but also for the development of fundamental theories. In this work, the translational and rotational dynamics of a single rigid ultra-thin nanorod probe particle in linear polymer melts are investigated using coarse-grained molecular dynamics (CG-MD) simulations. Our results indicate that the translational motion of an ultra-thin NR, which has a diameter equal to the polymer monomer size, is not affected by the polymer chain length N in entangled polymer melts. This finding verifies de Gennes' theoretical prediction for the first time. However, the rotational dynamics of a NR with rod length L = 21, which is larger than the polymer tube diameter dt, is weakly coupled with polymer entanglement strands, revealing a different N-dependence for translational and rotational dynamics. The results for NRs with different lengths L also show that the size ratio between L and the polymer characteristic size is the dominant factor for NR dynamics, especially for rotational dynamics in entangled melts.

16.
Phys Chem Chem Phys ; 20(3): 1381-1394, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29271449

RESUMEN

We have developed a multiscale model that combines first-principles methods with atomistic and mesoscopic simulations to explore the molecular structures and packing density of the ligands present on the gold nanoparticle (AuNP) surface, as well as the adsorption/exchange reaction kinetics of cetyltrimethylammonium bromide (CTAB)/PEG-SH ligands on different facets of gold, namely, Au(111), Au(100), and Au(110). Our model predicts that on clean gold surfaces, CTAB adsorption is diffusion limited. Specifically, CTAB has the preferentially higher adsorption rate and coverage density on Au(100) and Au(110) surfaces, forming a more compact layer with respect to that on the Au(111) surface, which could result in greater growth of gold nanoparticles along the (111) direction. As opposed to CTAB adsorption, the exchange reaction between PEG-SH with CTAB shows no selectivity to different crystal faces, and the reaction process follows Langmuir diffusion kinetics. Kinetic analysis reveals that, in water, the exchange reaction is zeroth order with respect to the concentration of an incoming PEG-SH, indicative of a dissociative exchange mechanism. The observed rate constant decreases exponentially with the PEG-SH chain length, consistent with a diffusion process for the free PEG-SH in water. In particular, we show that the exchange efficiency increases as the chain rigidness and size of the incoming ligand and/or steric bulk of the initial protecting ligand shell are decreased. Our objectives are to provide a model to assess the kinetics and thermodynamics of the adsorption/exchange reaction process, and we expect that these findings will have important implications for routine surface characterization of AuNPs.

17.
Phys Chem Chem Phys ; 19(25): 16524-16532, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28612884

RESUMEN

The controllable distribution of nanoparticles (NPs) in polymer nanocomposites (PNCs) is a challenge in materials science. An important method is grafting chains that are chemically identical to the polymer matrix on NPs. By performing comprehensive molecular dynamics simulations, the self-assembly behavior of polymer-grafted NPs in a polymer matrix is investigated in this study. The relationship between the grafted chain length N, grafting density σ and the NPs' self-assembly morphologies is studied. Phase diagrams of the NP self-assembly structures for both unimodal and bimodal grafted NP systems are constructed on a parameter space, where P is the matrix polymer chain length. NP self-assembly structures of strings, connected/sheet and small clusters are identified in different regions. In order to quantitatively characterize the NP self-assembly morphology, we define a morphological measurement parameter which characterizes the distribution of the Voronoi cell volume of the NPs. Using this parameter, we discuss the influences of both long and short grafted chains on the dispersion of bimodal polymer-grafted NPs in a polymer melt. We find that the short grafted chains can not only shield the NP surface from the polymer matrix but also elongate the long grafted chains into the polymer matrix, therefore favoring a better dispersion of NPs. Our results also indicate that the bimodal grafted NPs will not be fully dispersed until the short grafted chains are dense enough to elongate the long grafted chains, hence forming a wetting NP/matrix interface.

18.
J Comput Chem ; 37(3): 378-87, 2016 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26584145

RESUMEN

We present new algorithms to improve the performance of ENUF method (F. Hedman, A. Laaksonen, Chem. Phys. Lett. 425, 2006, 142) which is essentially Ewald summation using Non-Uniform FFT (NFFT) technique. A NearDistance algorithm is developed to extensively reduce the neighbor list size in real-space computation. In reciprocal-space computation, a new algorithm is developed for NFFT for the evaluations of electrostatic interaction energies and forces. Both real-space and reciprocal-space computations are further accelerated by using graphical processing units (GPU) with CUDA technology. Especially, the use of CUNFFT (NFFT based on CUDA) very much reduces the reciprocal-space computation. In order to reach the best performance of this method, we propose a procedure for the selection of optimal parameters with controlled accuracies. With the choice of suitable parameters, we show that our method is a good alternative to the standard Ewald method with the same computational precision but a dramatically higher computational efficiency.

19.
J Chem Phys ; 142(7): 074902, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25702026

RESUMEN

The effect of confinement on the glass transition temperature Tg of polymeric glass formers with different side chain stiffness is investigated by coarse-grained molecular dynamics simulations. We find that polymer with stiffer side groups exhibits much more pronounced Tg variation in confinement compared to that with relatively flexible side groups, in good agreement with experiments. Our string analysis demonstrates that the polymer species dependence of dynamics can be described by an Adam-Gibbs like relation between the size of cooperatively rearranging regions and relaxation time. However, the primary effect of changing side-group stiffness is to alter the activation barrier for rearrangement, rather than string size. We clarify that free-surface perturbation is the primary factor in determining the magnitude of Tg variation for polymers in confinement: It is more significant for polymers having higher Tg and results in much more pronounced reduction of surface Tg and then the overall Tg of the polymers.

20.
Soft Matter ; 10(13): 2245-52, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24652464

RESUMEN

The self-assembly processes of miktoarm star-like block copolymers (Ax1)y-C-(Bx2)y, in which y homopolymer chains of type A with chain length x1 as well as y chains of type B with chain length x2 are connected to a center core C, are investigated by using Brownian dynamics simulations. We focus on the selective solvent condition, i.e., the solvent is poor for components B and C, but varies from good to poor for component A. The miktoarm star-like block copolymers with A and B arms of equal length can form spherical micelles when the solvent is good for component A. In the same solvent conditions, the micelles contain fewer miktoarm star-like block copolymers as the arm length increases. When the solvent is poor for component A, the miktoarm star-like block copolymers can self-assemble into cylindrical or disk-like micelles with decreasing solvent quality. For the miktoarm star-like block copolymers with longer B arms but shorter A arms, self-assembly into spherical vesicles is possible in a wide range of solvent conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA