RESUMEN
BACKGROUND: While it is well recognized that different biomaterials induce thrombosis at low shear rates, the effect of high shear rates may be quite different. We hypothesize that the amount of thrombus formation on a given material can be greatly influenced by the local shear rate. METHODS: We tested this hypothesis with two different whole blood perfusion loop assays to quantify biomaterial thrombogenicity as a function of shear stress. One assay uses obstructive posts (pins) of material positioned centrally in a tube perfused at high shear rate of >5000/s for 24 h. A second assay uses a parallel plate chamber to perfuse low (<150/s), medium (~500/s), and high shear rates over 96 h. We evaluated the thrombogenicity of seven different biomaterials including stainless steel, acrylic, ceramic, Dacron, polytetrafluoroethylene (PTFE), silicone, and polyvinyl chloride (PVC). RESULTS: For the pin assay, thrombus mass was significantly greater for stainless steel than either zirconia ceramic or acrylic (p < 0.001). Similarly, the parallel plate chamber at high shear showed that steel and PTFE (p < 0.02) occluded the chamber faster than acrylic. In contrast, a low shear parallel plate chamber revealed that stainless steel and PTFE were least thrombogenic, while silicone, Dacron, and other plastics such as acrylic were most thrombogenic. Histology revealed that high shear thrombi had a large proportion of platelets not seen in the low shear fibrin-rich thrombi. CONCLUSION: This differential thrombogenicity based on shear rate conditions may be important in the selection of biomaterials for blood-contacting devices.
Asunto(s)
Materiales Biocompatibles , Trombosis , Materiales Biocompatibles/efectos adversos , Plaquetas/patología , Hemodinámica , Humanos , Politetrafluoroetileno/efectos adversos , Trombosis/etiología , Trombosis/patologíaRESUMEN
BACKGROUND: Currently, the use of radiotherapy alone for people with multiple myeloma is limited to palliation of pain, pending fracture, and control of spinal-cord compression. Single immune-checkpoint inhibitors, such as anti-programmed death-1 (anti-PD1), have not been successful. We aimed to evaluate the activity and safety of the combination of pembrolizumab and low-dose, single-fraction, hypofractionated radiotherapy to treat patients with relapsed or refractory multiple myeloma. METHODS: For this prospective, single-centre, single-group, open-label, phase 2 trial, we recruited patients with relapsed or refractory multiple myeloma from the Winship Cancer Institute (Emory University, Atlanta, GA, USA). Key inclusion criteria were aged 18 years or older, Eastern Cooperative Oncology Group (ECOG) performance score of 0 or 1, relapsed or refractory multiple myeloma as indicated by progression under International Myeloma Working Group (IMWG) criteria, and adequate candidacy for both pembrolizumab and radiotherapy. Baseline and post-treatment assessments were serial bone-marrow biopsy, peripheral blood collections, staging, serial serum and urine paraprotein analysis, serial PET-CT imaging, and a physical examination. On day 1, patients received hypofractionated 8 gray in 1 fraction (8 Gy/1 fx) radiotherapy to either symptomatic or progressing extra-osseous or osseous myeloma sites. Patients also received pembrolizumab (200 mg/kg intravenously) on day 2 or 3, then once every 3 weeks (±7 days) for 2 years or until progressive disease, unacceptable toxicity, withdrawal of consent, loss to follow-up, or death. Dose reduction and interruptions were not allowed. The primary outcome was acute toxicity defined as grade 3 or worse toxicity at 3 months within the radiated site when used in combination with pembrolizumab. All patients were analysed per protocol and included in safety analyses. This trial is registered on ClinicalTrials.gov (NCT03267888); it is completed and closed to accrual. FINDINGS: 32 patients were screened between June 1, 2018, and Sept 2, 2022, and 25 were enrolled in the trial and treated on protocol. Of the 25 treated patients, 11 (44%) were female and 14 (56%) were male. 19 (76%) patients were White and six (24%) were Black or African American. Toxicity, as the primary outcome, was deemed to be acceptable as no grade 4 or 5 adverse events were observed. At 3-month follow-up, eight (32%) of 25 patients had treatment benefit (one had stable disease, three had partial response, two had very good partial response, and two had complete response). There was no grade 3 or worse radiation-related toxicity within irradiated volumes. One (4%) patient of the 25 who received combination treatment had a grade 3 pembrolizumab-related adverse event. There were no treatment-related deaths. INTERPRETATION: Combination treatment of low-dose, single-fraction radiotherapy with pembrolizumab was safe, with early promise of response activity. Our approach could be an option for patients with relapsed or refractory multiple myeloma who have not responded to previous treatment. Larger trials to substantiate our findings are needed. FUNDING: Merck Sharp & Dohme.