Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 153(5): 1012-24, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706739

RESUMEN

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatogénesis , Testículo/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Roturas del ADN de Doble Cadena , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
2.
EMBO J ; 39(18): e104365, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32696520

RESUMEN

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Asunto(s)
Folículo Piloso/enzimología , Sirtuinas/metabolismo , Células Madre/enzimología , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Sirtuinas/genética
3.
Stem Cells ; 40(5): 493-507, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35349711

RESUMEN

DNA damage is assumed to accumulate in stem cells over time and their ability to withstand this damage and maintain tissue homeostasis is the key determinant of aging. Nonetheless, relatively few studies have investigated whether DNA damage does indeed accumulate in stem cells and whether this contributes to stem cell aging and functional decline. Here, we found that, compared with young mice, DNA double-strand breaks (DSBs) are reduced in the subventricular zone (SVZ)-derived neural stem cells (NSCs) of aged mice, which was achieved partly through the adaptive upregulation of Sirt1 expression and non-homologous end joining (NHEJ)-mediated DNA repair. Sirt1 deficiency abolished this effect, leading to stem cell exhaustion, olfactory memory decline, and accelerated aging. The reduced DSBs and the upregulation of Sirt1 expression in SVZ-derived NSCs with age may represent a compensatory mechanism that evolved to protect stem cells from excessive DNA damage, as well as mitigate memory loss and other stresses during aging.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Sirtuina 1 , Envejecimiento/genética , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Ventrículos Laterales/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
4.
Nucleic Acids Res ; 48(9): 4992-5005, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32239217

RESUMEN

SIRT6 deacetylase activity improves stress resistance via gene silencing and genome maintenance. Here, we reveal a deacetylase-independent function of SIRT6, which promotes anti-apoptotic gene expression via the transcription factor GATA4. SIRT6 recruits TIP60 acetyltransferase to acetylate GATA4 at K328/330, thus enhancing its chromatin binding capacity. In turn, GATA4 inhibits the deacetylase activity of SIRT6, thus ensuring the local chromatin accessibility via TIP60-promoted H3K9 acetylation. Significantly, the treatment of doxorubicin (DOX), an anti-cancer chemotherapeutic, impairs the SIRT6-TIP60-GATA4 trimeric complex, blocking GATA4 acetylation and causing cardiomyocyte apoptosis. While GATA4 hyperacetylation-mimic retains the protective effect against DOX, the hypoacetylation-mimic loses such ability. Thus, the data reveal a novel SIRT6-TIP60-GATA4 axis, which promotes the anti-apoptotic pathway to prevent DOX toxicity. Targeting the trimeric complex constitutes a new strategy to improve the safety of DOX chemotherapy in clinical application.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Epigénesis Genética , Factor de Transcripción GATA4/metabolismo , Miocitos Cardíacos/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Apoptosis , Células Cultivadas , Expresión Génica , Células HEK293 , Humanos , Lisina Acetiltransferasa 5/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Sirtuinas/genética
5.
Nucleic Acids Res ; 48(6): 2912-2923, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31970414

RESUMEN

NAD+-dependent SIRT7 deacylase plays essential roles in ribosome biogenesis, stress response, genome integrity, metabolism and aging, while how it is transcriptionally regulated is still largely unclear. TGF-ß signaling is highly conserved in multicellular organisms, regulating cell growth, cancer stemness, migration and invasion. Here, we demonstrate that histone deacetylase HDAC8 forms complex with SMAD3/4 heterotrimer and occupies SIRT7 promoter, wherein it deacetylates H4 and thus suppresses SIRT7 transcription. Treatment with HDAC8 inhibitor compromises TGF-ß signaling via SIRT7-SMAD4 axis and consequently, inhibits lung metastasis and improves chemotherapy efficacy in breast cancer. Our data establish a regulatory feedback loop of TGF-ß signaling, wherein HDAC8 as a novel cofactor of SMAD3/4 complex, transcriptionally suppresses SIRT7 via local chromatin remodeling and thus further activates TGF-ß signaling. Targeting HDAC8 exhibits therapeutic potential for TGF-ß signaling related diseases.


Asunto(s)
Movimiento Celular , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Sirtuinas/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Supervivencia Celular/genética , Ensamble y Desensamble de Cromatina/genética , Resistencia a Antineoplásicos/genética , Células HEK293 , Humanos , Metástasis de la Neoplasia , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/antagonistas & inhibidores , Transducción de Señal , Sirtuinas/genética , Transcripción Genética , Factor de Crecimiento Transformador beta/metabolismo
6.
Adv Exp Med Biol ; 1086: 235-254, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30232763

RESUMEN

The aging population represents a significant worldwide socioeconomic challenge. Aging is an inevitable and multifactorial biological process and primary risk factor for most age-related diseases, such as cardiovascular diseases, cancers, type 2 diabetes mellitus (T2DM), and neurodegenerative diseases. Pharmacological interventions targeting aging appear to be a more effective approach in preventing age-related disorders compared with the treatments targeted to specific disease. In this chapter, we focus on the latest findings on molecular compounds that mimic caloric restriction (CR), supplement nicotinamide adenine dinucleotide (NAD+) levels, and eliminate senescent cells, including metformin, resveratrol, spermidine, rapamycin, NAD+ boosters, as well as senolytics. All these interventions modulate the determinants and pathways responsible for aging/longevity, such as the kinase target of rapamycin (TOR), AMP-activated protein kinase (AMPK), sirtuins, and insulin-like growth factor (IGF-1) signaling (Fig. 15.1).


Asunto(s)
Envejecimiento , Preparaciones Farmacéuticas , Restricción Calórica , Enfermedades Cardiovasculares/prevención & control , Senescencia Celular , Diabetes Mellitus Tipo 2/prevención & control , Humanos , Longevidad , NAD , Neoplasias/prevención & control , Enfermedades Neurodegenerativas/prevención & control , Factores de Riesgo , Transducción de Señal/efectos de los fármacos
7.
Cell Rep ; 43(4): 114003, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527062

RESUMEN

The major histocompatibility complex class I (MHC class I)-mediated tumor antigen processing and presentation (APP) pathway is essential for the recruitment and activation of cytotoxic CD8+ T lymphocytes (CD8+ CTLs). However, this pathway is frequently dysregulated in many cancers, thus leading to a failure of immunotherapy. Here, we report that activation of the tumor-intrinsic Hippo pathway positively correlates with the expression of MHC class I APP genes and the abundance of CD8+ CTLs in mouse tumors and patients. Blocking the Hippo pathway effector Yes-associated protein/transcriptional enhanced associate domain (YAP/TEAD) potently improves antitumor immunity. Mechanistically, the YAP/TEAD complex cooperates with the nucleosome remodeling and deacetylase complex to repress NLRC5 transcription. The upregulation of NLRC5 by YAP/TEAD depletion or pharmacological inhibition increases the expression of MHC class I APP genes and enhances CD8+ CTL-mediated killing of cancer cells. Collectively, our results suggest a crucial tumor-promoting function of YAP depending on NLRC5 to impair the MHC class I APP pathway and provide a rationale for inhibiting YAP activity in immunotherapy for cancer.


Asunto(s)
Presentación de Antígeno , Vía de Señalización Hippo , Antígenos de Histocompatibilidad Clase I , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Linfocitos T Citotóxicos/inmunología , Factores de Transcripción/metabolismo
8.
Nat Commun ; 12(1): 5058, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433808

RESUMEN

Dietary interventions such as intermittent fasting (IF) have emerged as an attractive strategy for cancer therapies; therefore, understanding the underlying molecular mechanisms is pivotal. Here, we find SIRT7 decline markedly attenuates the anti-tumor effect of IF. Mechanistically, AMP-activated protein kinase (AMPK) phosphorylating SIRT7 at T263 triggers further phosphorylation at T255/S259 by glycogen synthase kinase 3ß (GSK3ß), which stabilizes SIRT7 by decoupling E3 ligase UBR5. SIRT7 hyperphosphorylation achieves anti-tumor activity by disrupting the SKP2-SCF E3 ligase, thus preventing SKP2-mediated K63-linked AKT polyubiquitination and subsequent activation. In contrast, GSK3ß-SIRT7 axis is inhibited by EGF/ERK2 signaling, with ERK2 inactivating GSK3ß, thus accelerating SIRT7 degradation. Unfavorably, glucose deprivation or chemotherapy hijacks the GSK3ß-SIRT7 axis via ERK2, thus activating AKT and ensuring survival. Notably, Trametinib, an FDA-approved MEK inhibitor, enhances the efficacy of combination therapy with doxorubicin and IF. Overall, we have revealed the GSK3ß-SIRT7 axis that must be fine-tuned in the face of the energetic and oncogenic stresses in malignancy.


Asunto(s)
Ayuno/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Sirtuinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Terapia Combinada , Doxorrubicina/administración & dosificación , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteolisis , Sirtuinas/genética
9.
Commun Biol ; 4(1): 1391, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903832

RESUMEN

Non-small cell lung cancer (NSCLC) is a deadly and highly prevalent malignancy. Targeting activated-EGFR mutations in NSCLC via EGFR tyrosine kinase inhibitor (EGFR-TKI) initially achieves a profound therapeutic response, but resistance frequently evolves, reducing treatment options. Here, we present a small-molecule compound D6 which selectively inhibits tumor cell growth and migration in NSCLC cells with EGFR-TKI-resistant T790M-EGFR-activated mutations (T790M-EGFR-AM), e.g., L858R/T790M, 19Del/T790M and L858R/T790M/C797S. D6 mimics a natural product isolated from the roots of Codonopsis pilosula and selectively competes with T790M-EGFR-AM to bind to HSP90, thus facilitating the ubiquitination dependent proteasomal degradation of T790M-EGFR-AM. By contrast, D6 has little impact on typical HSP90 chaperone activity, suggesting low systemic toxicity. Promisingly, D6 combined with erlotinib or osimertinib shows efficacy in overcoming the EGFR-TKIs-resistance in NSCLCs. Our study raises an alternative strategy to overcome T790M-mediated EGFR-TKI resistance in NSCLC via targeting the protein-protein interaction of HSP90 and T790M-EGFR by intervention with D6.


Asunto(s)
Antineoplásicos/farmacología , Campanulaceae/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/química
10.
Aging Cell ; 19(6): e13147, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32351002

RESUMEN

Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson-Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot-like PML NBs are reorganized into thread-like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co-immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread-like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno-TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB-associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread-like PML NBs might be a novel, morphological, and functional biomarker of late senescence.


Asunto(s)
Lamina Tipo A/metabolismo , Progeria/metabolismo , Progeria/patología , Adulto , Línea Celular , Núcleo Celular/metabolismo , Senescencia Celular/fisiología , Femenino , Fibroblastos , Humanos , Progeria/genética , Transfección , Adulto Joven
11.
Sci Adv ; 6(8): eaay5556, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32128409

RESUMEN

Vascular dysfunction is a typical characteristic of aging, but its contributing roles to systemic aging and the therapeutic potential are lacking experimental evidence. Here, we generated a knock-in mouse model with the causative Hutchinson-Gilford progeria syndrome (HGPS) LmnaG609G mutation, called progerin. The Lmnaf/f ;TC mice with progerin expression induced by Tie2-Cre exhibit defective microvasculature and neovascularization, accelerated aging, and shortened life span. Single-cell transcriptomic analysis of murine lung endothelial cells revealed a substantial up-regulation of inflammatory response. Molecularly, progerin interacts and destabilizes deacylase Sirt7; ectopic expression of Sirt7 alleviates the inflammatory response caused by progerin in endothelial cells. Vascular endothelium-targeted Sirt7 gene therapy, driven by an ICAM2 promoter, improves neovascularization, ameliorates aging features, and extends life span in Lmnaf/f ;TC mice. These data support endothelial dysfunction as a primary trigger of systemic aging and highlight gene therapy as a potential strategy for the clinical treatment of HGPS and age-related vascular dysfunction.


Asunto(s)
Endotelio Vascular/metabolismo , Terapia Genética , Longevidad , Progeria/genética , Progeria/metabolismo , Sirtuinas/genética , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Células Endoteliales , Perfilación de la Expresión Génica , Terapia Genética/métodos , Humanos , Longevidad/genética , Ratones , Ratones Noqueados , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Progeria/terapia , Análisis de la Célula Individual , Vasodilatación
12.
Elife ; 92020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538779

RESUMEN

The DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR in human and mouse cells. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair in humans and mice.


Asunto(s)
Roturas del ADN , Daño del ADN , Reparación del ADN , Sirtuina 1/fisiología , Sirtuinas/fisiología , Acetilación , Animales , Roturas del ADN de Doble Cadena , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Ratones , Mutagénesis Sitio-Dirigida , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
13.
FEBS J ; 287(1): 108-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361392

RESUMEN

Metabolic reprogramming, hallmarked by enhanced glycolysis and reduced mitochondrial activity, is a key event in the early phase of somatic cell reprogramming. Although extensive work has been conducted to identify the mechanisms of mitochondrial remodeling in reprogramming, many questions remain. In this regard, different laboratories have proposed a role in this process for either canonical (ATG5-dependent) autophagy-mediated mitochondrial degradation (mitophagy), noncanonical (ULK1-dependent, ATG5-independent) mitophagy, mitochondrial fission or reduced biogenesis due to mTORC1 suppression. Clarifying these discrepancies is important for providing a comprehensive picture of metabolic changes in reprogramming. Yet, the comparison among these studies is difficult because they use different reprogramming conditions and mitophagy detection/quantification methods. Here, we have systematically explored mitochondrial remodeling in reprogramming using different culture media and reprogramming factor cocktails, together with appropriate quantification methods and thorough statistical analysis. Our experiments show lack of evidence for mitophagy in mitochondrial remodeling in reprogramming, and further confirm that the suppression of the mTORC1-PGC1 pathway drives this process. Our work helps to clarify the complex interplay between metabolic changes and nutrient sensing pathways in reprogramming, which may also shed light on other contexts such as development, aging and cancer.


Asunto(s)
Reprogramación Celular , Células Madre Embrionarias/patología , Fibroblastos/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/patología , Mitofagia , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Glucólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Factores de Transcripción/genética
14.
Nat Metab ; 1(11): 1141-1156, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32694864

RESUMEN

The central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes peripheral oscillators to coordinate physiological and behavioural activities throughout the body. How circadian phase coherence between the SCN and the periphery is controlled is not well understood. Here, we identify hepatic SIRT7 as an early responsive element to light that ensures circadian phase coherence in the mouse liver. The SCN-driven body temperature (BT) oscillation induces rhythmic expression of HSP70, which promotes SIRT7 ubiquitination and proteasomal degradation. Acute temperature challenge dampens the BT oscillation and causes an advanced liver circadian phase. Further, hepatic SIRT7 deacetylates CRY1, promotes its FBXL3-mediated degradation and regulates the hepatic clock and glucose homeostasis. Loss of Sirt7 in mice leads to an advanced liver circadian phase and rapid entrainment of the hepatic clock upon daytime-restricted feeding. These data identify a BT-HSP70-SIRT7-CRY1 axis that couples the mouse hepatic clock to the central pacemaker and ensures circadian phase coherence and glucose homeostasis.


Asunto(s)
Temperatura Corporal , Ritmo Circadiano , Gluconeogénesis , Luz , Hígado/metabolismo , Sirtuinas/metabolismo , Animales , Homeostasis , Ratones
15.
Sci Adv ; 5(3): eaav5078, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30906869

RESUMEN

Defective nuclear lamina protein lamin A is associated with premature aging. Casein kinase 2 (CK2) binds the nuclear lamina, and inhibiting CK2 activity induces cellular senescence in cancer cells. Thus, it is feasible that lamin A and CK2 may cooperate in the aging process. Nuclear CK2 localization relies on lamin A and the lamin A carboxyl terminus physically interacts with the CK2α catalytic core and inhibits its kinase activity. Loss of lamin A in Lmna-knockout mouse embryonic fibroblasts (MEFs) confers increased CK2 activity. Conversely, prelamin A that accumulates in Zmpste24-deficent MEFs exhibits a high CK2α binding affinity and concomitantly reduces CK2 kinase activity. Permidine treatment activates CK2 by releasing the interaction between lamin A and CK2, promoting DNA damage repair and ameliorating progeroid features. These data reveal a previously unidentified function for nuclear lamin A and highlight an essential role for CK2 in regulating senescence and aging.


Asunto(s)
Envejecimiento/genética , Quinasa de la Caseína II/genética , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Metaloendopeptidasas/genética , Progeria/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Quinasa de la Caseína II/química , Núcleo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Humanos , Lamina Tipo A/química , Ratones , Ratones Noqueados , Progeria/tratamiento farmacológico , Progeria/patología , Unión Proteica/genética , Espermidina/farmacología
16.
Oncogene ; 37(49): 6299-6315, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30038266

RESUMEN

Cancer stem cell (CSC)-dictated intratumor heterogeneity accounts for the majority of drug-resistance and distant metastases of breast cancers. Here, we identify a SIRT1-PRRX1-KLF4-ALDH1 circuitry, which couples CSCs, chemo-resistance, metastasis and aging. Pro-longevity protein SIRT1 deacetylates and stabilizes the epithelial-to-mesenchymal-transition (EMT) inducer PRRX1, which inhibits the transcription of core stemness factor KLF4. Loss of SIRT1 destabilizes PRRX1, disinhibits KLF4, and activates the transcription of ALDH1, which induces and functionally marks CSCs, resulting in chemo-resistance and metastatic relapse. Clinically, the level of PRRX1 is positively linked to SIRT1, whereas KLF4 is reversely correlated. Importantly, KLF4 inhibitor Kenpaullone sensitizes breast cancer cells and xenograft tumors to Paclitaxel and improves therapeutic effects. Our findings delineate a SIRT1-centered circuitry that regulates CSC origination, and targeting this pathway might be a promising therapeutic strategy.


Asunto(s)
Neoplasias de la Mama/patología , Células Madre Neoplásicas/patología , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Familia de Aldehído Deshidrogenasa 1 , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Humanos , Isoenzimas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Células Madre Neoplásicas/metabolismo , Retinal-Deshidrogenasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Elife ; 72018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29717979

RESUMEN

DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.


Asunto(s)
Cloroquina/administración & dosificación , Progeria/tratamiento farmacológico , Sirtuinas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caenorhabditis elegans , Reparación del ADN , Longevidad , Ratones , Ratones Noqueados , Actividad Motora , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
18.
Nat Commun ; 8(1): 318, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28827661

RESUMEN

Distant metastasis is the main cause of breast cancer-related death; however, effective therapeutic strategies targeting metastasis are still scarce. This is largely attributable to the spatiotemporal intratumor heterogeneity during metastasis. Here we show that protein deacetylase SIRT7 is significantly downregulated in breast cancer lung metastases in human and mice, and predicts metastasis-free survival. SIRT7 deficiency promotes breast cancer cell metastasis, while temporal expression of Sirt7 inhibits metastasis in polyomavirus middle T antigen breast cancer model. Mechanistically, SIRT7 deacetylates and promotes SMAD4 degradation mediated by ß-TrCP1, and SIRT7 deficiency activates transforming growth factor-ß signaling and enhances epithelial-to-mesenchymal transition. Significantly, resveratrol activates SIRT7 deacetylase activity, inhibits breast cancer lung metastases, and increases survival. Our data highlight SIRT7 as a modulator of transforming growth factor-ß signaling and suppressor of breast cancer metastasis, meanwhile providing an effective anti-metastatic therapeutic strategy.Metastatic disease is the major reason for breast cancer-related deaths; therefore, a better understanding of this process and its players is needed. Here the authors report the role of SIRT7 in inhibiting SMAD4-mediated breast cancer metastasis providing a possible therapeutic avenue.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Sirtuinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones Transgénicos , Interferencia de ARN , Transducción de Señal , Sirtuinas/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA