RESUMEN
Osteoarthritis is a progressive degenerative joint disease induced by many causes, for which there is no radical cure currently. Necroptosis is a newly reported programmed cell death, and its related factors are also inseparable from the progress of osteoarthritis. For examples, damage-associatedâmolecularâpattern promotes the release of various inflammatory factors, so as to recruit macrophages and promote local inflammation of the joint; inhibition of receptor-interacting protein kinase can reduce the death of cell and the expression of inflammatory factors, so as to reduce cartilage damage. Therefore, in-depth study of the regulatory mechanism of necroptosis in osteoarthritis will help to further reveal the pathogenesis of osteoarthritis, so as to provide potential targets for the treatment of osteoarthritis.
Asunto(s)
Necroptosis , Osteoartritis , Apoptosis/fisiología , Humanos , Inflamación , Macrófagos/metabolismo , Osteoartritis/etiología , Osteoartritis/terapiaRESUMEN
Bile acids, initially discovered as endogenous ligands of farnesoid X receptor (FXR), play a central role in the regulation of triglyceride and cholesterol metabolism and have recently emerged as a privileged structure for interacting with nuclear receptors relevant to a large array of metabolic processes. In this paper, phenoxy containing cholic acid derivatives with excellent drug-likeness have been designed, synthesized, and assayed as agents against cholesterol accumulation in Raw264.7 macrophages. The most active compound 14b reduced total cholesterol accumulation in Raw264.7 cells up to 30.5% at non-toxic 10⯵M and dosage-dependently attenuated oxLDL-induced foam cell formation. Western blotting and qPCR results demonstrate that 14b reduced both cholesterol and lipid in Raw264.7 cells through (1) increasing the expression of cholesterol transporters ABCA1 and ABCG1, (2) accelerating ApoA1-mediated cholesterol efflux. Through a cell-based luciferase reporter assay and molecular docking analysis, LXR was identified as the potential target for 14b. Interestingly, unlike conventional LXR agonist, 14b did not increase lipogenesis gene SREBP-1c expression. Overall, these diverse properties disclosed herein highlight the potential of 14b as a promising lead for further development of multifunctional agents in the therapy of cardiovascular disease.
Asunto(s)
Colesterol/metabolismo , Ácido Cólico/química , Ácido Cólico/farmacología , Diseño de Fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Animales , Anticolesterolemiantes/síntesis química , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacología , Ácido Cólico/síntesis química , Descubrimiento de Drogas , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Células RAW 264.7 , Transducción de Señal/efectos de los fármacosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY: The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS: This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1ß, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS: A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1ß, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION: The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.
Asunto(s)
Medicamentos Herbarios Chinos , Absorción Intestinal , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratas , Absorción Intestinal/efectos de los fármacos , Administración Oral , Ácidos Cafeicos/farmacocinética , Ácidos Cafeicos/administración & dosificación , Factores de EdadRESUMEN
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru0 and Ru4+ components. This design facilitates efficient NO elimination via Ru0 while simultaneously exhibiting ROS scavenging properties through Ru4+. Consequently, MEBTHS orchestrates macrophage reprogramming by neutralizing ROS and reversing NO-mediated mitochondrial metabolism, thereby rejuvenating bone marrow-derived mesenchymal stem cells and endothelial cells within diabetic mandibular defects, producing newly formed bone with quality comparable to that of normal bone. The scRNA-seq guided multienzymatic hydrogel design fosters the restoration of self-regenerative repair, marking a significant advancement in bone tissue engineering.
RESUMEN
The estrogen receptors have played important roles in breast cancer development and progression. Selective estrogen receptor modulators, such as Tamoxifen, have showed great benefits in the treatment and prevention of breast cancer. But the disadvantages of induction of endometrial cancer and drug resistance have limited their use. Multiple ligand which act at multiple biomolecular targets may exert favorable advantages of improved efficacy with lower incidence of side effects. In this work, we described the synthesis and evaluation of a series of 6-aryl-indenoisoquinolone derivatives as dual ERα and VEGFR-2 inhibitors. These compounds presented good ERα binding affinity and ERα antagonistic activity, as well as potent VEGFR-2 inhibitory potency. They also possessed excellent anti-proliferative activities against MCF-7, MDA-MB-231, Ishikawa and HUVEC cell lines. Further investigation of selective compound 21c showed that it was able to inhibit the activation of VEGFR-2 and the signaling transduction of Raf-1/MAPK/ERK pathway in MCF-7 cells.