Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5498-5505, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619556

RESUMEN

Revealing low-dimensional material growth dynamics is critical for crystal growth engineering. However, in a practical high-temperature growth system, the crystal growth process is a black box because of the lack of heat-resistant imaging tools. Here, we develop a heat-resistant optical microscope and embed it in a chemical vapor deposition (CVD) system to investigate two-dimensional (2D) crystal growth dynamics. This in situ optical imaging CVD system can tolerate temperatures of ≤900 °C with a spatial resolution of ∼1 µm. The growth of monolayer MoS2 crystals was studied as a model for 2D crystal growth. The nucleation and growth process have been imaged. Model analysis and simulation have revealed the growth rate, diffusion coefficient, and spatial distribution of the precursor. More importantly, a new vertex-kink-ledge model has been suggested for monolayer crystal growth. This work provides a new technique for in situ microscopic imaging at high temperatures and fundamental insight into 2D crystal growth.

2.
J Am Chem Soc ; 145(20): 11348-11355, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37172002

RESUMEN

Precise monolayer epitaxy is important for two-dimensional (2D) semiconductors toward future electronics. Here, we report a new self-limited epitaxy approach, liquid phase edge epitaxy (LPEE), for precise-monolayer epitaxy of transition-metal dichalcogenides. In this method, the liquid solution contacts 2D grains only at the edges, which confines the epitaxy only at the grain edges and then precise monolayer epitaxy can be achieved. High-temperature in situ imaging of the epitaxy progress directly supports this edge-contact epitaxy mechanism. Typical transition-metal dichalcogenide monolayers (MX2, M = Mo, W, and Re; X = S or Se) have been obtained by LPEE with a proper choice of molten alkali halide solvents (AL, A = Li, Na, K, and Cs; L = Cl, Br, or I). Furthermore, alloying and magnetic-element doping have also been realized by taking advantage of the liquid phase epitaxy approach. This LPEE method provides a precise and highly versatile approach for 2D monolayer epitaxy and can revolutionize the growth of 2D materials toward electronic applications.

3.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049740

RESUMEN

Surface-enhanced Raman scattering (SERS) technique is widely used for the highly sensitive detection of trace residues due to its unparalleled signal amplification ability and plays an important role in food safety, environmental monitoring, etc. Herein, CdSSe nano-flowers (CdSSe NFs) are synthesized via the chemical vapor deposition (CVD) method. CdSSe NFs thin film is used as a SERS substrate with an ultralow limit of detection (LOD, 10-14 M), high apparent enhancement factor (EF, 3.62 × 109), and excellent SERS stability (relative standard deviation, RSD = 3.05%) for probe molecules of Rh6G. Further, CdSSe NFs substrate is successfully applied in the sensitive, quantitative, and label-free analysis of ciprofloxacin (CIP) and enrofloxacin (ENR) antibiotics, which exhibit LODs of below 0.5 ppb. This excellent SERS platform may be widely utilized for sensitive life science and environmental sensing.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Oro/química , Límite de Detección , Inocuidad de los Alimentos , Espectrometría Raman/métodos , Nanopartículas del Metal/química
4.
RSC Adv ; 13(49): 34464-34474, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024984

RESUMEN

Alloying can effectively modify electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). However, efficient and simple methods to synthesize atomically thin TMD alloys need to be further developed. In this study, we synthesized 25 monolayer MoxW(1-x)S2ySe2(1-y) alloys by using a new liquid phase edge epitaxy (LPEE) growth method with high controllability. This straightforward approach can be used to obtain monolayer materials and operates on a self-limiting growth mechanism. The process allows the liquid solution to come into contact with the two-dimensional grains only at their edges, resulting in epitaxy confined only along the in-plane direction, which produces exclusively monolayer epitaxy. By controlling the weight ratio of MoS2/WSe2 (MoSe2/WS2), 25 monolayer MoxW(1-x)S2ySe2(1-y) alloys with different atomic ratios can be obtained on sapphire substrates, with band gap ranging from WS2 (1.55 eV) to MoSe2 (1.99 eV) and a continuously broad spectrum ranging from 623 nm to 800 nm. By adjusting the alloy composition, the carrier type and carrier mobility of alloy-based field-effect transistors can be modulated. In particular, the adjustable conductivity of MoxW(1-x)S2ySe2(1-y) alloys from n-type to bipolar type is achieved for the first time. This general synthetic strategy provides a foundation for the development of monolayer TMD alloys with multiple components and various 2D materials.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159716

RESUMEN

Constructing 2D heterojunctions with high performance is the critical solution for the optoelectronic applications of 2D materials. This work reports on the studies on the preparation of high-quality van der Waals SiAs single crystals and high-performance photodetectors based on the 2D SiAs/SnS2 heterojunction. The crystals are grown using the chemical vapor transport (CVT) method and then the bulk crystals are exfoliated to a few layers. Raman spectroscopic characterization shows that the low wavenumber peaks from interlayer vibrations shift significantly along with SiAs' thickness. In addition, when van der Waals heterojunctions of p-type SiAs/n-type SnS2 are fabricated, under the source-drain voltage of -1 V-1 V, they exhibit prominent rectification characteristics, and the ratio of forwarding conduction current to reverse shutdown current is close to 102, showing a muted response of 1 A/W under excitation light of 550 nm. The light responsivity and external quantum efficiency are increased by 100 times those of SiAs photodetectors. Our experimental results enrich the research on the IVA-VA group p-type layered semiconductors.

6.
Dalton Trans ; 47(22): 7431-7444, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29774348

RESUMEN

This study reports the hydrothermal synthesis of a novel series of twelve coordination compounds, namely, {[Cd(µ-Hnbtc)(H2O)4]·H2O}n (1), [Zn2(µ-Hnbtc)2(phen)2]·2H2O (2), [Zn(Hnbtc)(phen)2(H2O)]·4.5H2O (3), [Ni(Hnbtc)(phen)2(H2O)]·6H2O (4), [Zn2(µ-Hnbtc)2(2,2'-bipy)2]·2H2O (5), [Cd3(µ5-nbtc)(µ6-nbtc)(2,2'-bipy)2(H2O)]n (6), {[Zn3(µ3-nbtc)2(phen)3(H2O)2]·4H2O} (7), [Co(H2O)6][Co2(nbtc)2(µ-4,4'-bipy)(4,4'-bipy)2(H2O)6]·8H2O (8), {[Ni3(µ4-nbtc)2(µ-4,4'-bipy)2.5(µ-H2O)(H2O)3]·4H2O}n (9), {[Cd2(µ4-nbtc)(µ-OH)(2,2'-bipy)2]·H2O}n (10), [Cd2(µ4-nbtc)(µ-OH)(phen)2(H2O)]n (11), and {[Zn2(µ5-nbtc)(µ3-OH)(µ-4,4'-bipy)]·4,4'-bipy·H2O}n (12), which are derived from 3'-nitro-biphenyl-2,4,4'-tricarboxylic acid (H3nbtc) as a virtually unexplored building block. These compounds were generated in aqueous medium from the corresponding metal(ii) chlorides as a metal source, H3nbtc as a principal building block, NaOH as a base, and simple N,N-donor aromatic ligands as crystallization mediators (i.e., 1,10-phenanthroline, phen; 2,2'-bipyridine, 2,2'-bipy; or 4,4'-bipyridine, 4,4'-bipy). All products 1-12 were completely characterized in the solid state by IR spectroscopy, elemental and thermogravimetric (TGA) analyses, powder (PXRD) and single-crystal X-ray diffraction. Structures of 1-12 range from discrete 0D dimers (2 and 5) or monomers (3, 4, and 8) to 1D coordination polymers (CPs, 1, 6, 7, 10, and 11) and 3D metal-organic frameworks (MOFs, 9 and 12). A broad structural diversity of 1-12 is guided by the type of the metal(ii) node, the molar ratio between H3nbtc and sodium hydroxide, and the kind of crystallization mediator. Topological analysis and classification of metal-organic underlying nets was made, disclosing the following topological types: 2C1 (in 1 and 7), 1M2-1 (in 2 and 5), SP1-periodic net (in 10 and 11), tfz-d (in 12), and some topologically unique nets (in 6 and 9). Luminescence behavior of 1-3, 5-7, and 10-12 was studied in the solid state. Magnetic properties of a Ni(ii) MOF 9 were also investigated and modeled. All obtained products 1-12 represent the first structurally characterized examples of coordination compounds derived from H3nbtc, thus opening up its application in coordination chemistry as a novel tricarboxylate building block.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA