Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 608(7924): 712-718, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36002487

RESUMEN

Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.

2.
Nature ; 577(7789): 216-220, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915399

RESUMEN

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels1,2, both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks3-13. However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)14 can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains15,16 for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


Asunto(s)
Lípidos/química , Protones , Membrana Dobles de Lípidos , Modelos Moleculares , Conformación Molecular , Polímeros
3.
Proc Natl Acad Sci U S A ; 119(13): e2119509119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312375

RESUMEN

SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.


Asunto(s)
Hidrolasas , Polímeros , Complejos Multienzimáticos , Plásticos , Tereftalatos Polietilenos/química , Reciclaje
4.
J Am Chem Soc ; 146(22): 14959-14971, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781575

RESUMEN

Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer , Polímeros , Linfocitos T , Animales , Ratones , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/química , Polímeros/química , Polímeros/farmacología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Línea Celular Tumoral
5.
Phys Chem Chem Phys ; 26(8): 6582-6589, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38329233

RESUMEN

Allosteric regulation is common in protein-protein interactions and is thus promising in drug design. Previous experimental and simulation work supported the presence of allosteric regulation in the SARS-CoV-2 spike protein. Here the route of allosteric regulation in SARS-CoV-2 spike protein is examined by all-atom explicit solvent molecular dynamics simulations, contrastive machine learning, and the Ohm approach. It was found that peptide binding to the polybasic cleavage sites, especially the one at the first subunit of the trimeric spike protein, activates the fluctuation of the spike protein's backbone, which eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2. Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a high fraction (39-67%) of the critical amino acids with the routes starting from the nitrogen-terminal domains, suggesting the presence of an allosteric regulation network in the spike protein. Our study paves the way for the rational design of allosteric antibody inhibitors.


Asunto(s)
COVID-19 , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Sitios de Unión , Unión Proteica , Regulación Alostérica , Simulación de Dinámica Molecular
6.
Proc Natl Acad Sci U S A ; 116(39): 19274-19281, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501317

RESUMEN

The conformation of water around proteins is of paramount importance, as it determines protein interactions. Although the average water properties around the surface of proteins have been provided experimentally and computationally, protein surfaces are highly heterogeneous. Therefore, it is crucial to determine the correlations of water to the local distributions of polar and nonpolar protein surface domains to understand functions such as aggregation, mutations, and delivery. By using atomistic simulations, we investigate the orientation and dynamics of water molecules next to 4 types of protein surface domains: negatively charged, positively charged, and charge-neutral polar and nonpolar amino acids. The negatively charged amino acids orient around 98% of the neighboring water dipoles toward the protein surface, and such correlation persists up to around 16 Å from the protein surface. The positively charged amino acids orient around 94% of the nearest water dipoles against the protein surface, and the correlation persists up to around 12 Å. The charge-neutral polar and nonpolar amino acids are also orienting the water neighbors in a quantitatively weaker manner. A similar trend was observed in the residence time of the nearest water neighbors. These findings hold true for 3 technically important enzymes (PETase, cytochrome P450, and organophosphorus hydrolase). Our results demonstrate that the water-amino acid degree of correlation follows the same trend as the amino acid contribution in proteins solubility, namely, the negatively charged amino acids are the most beneficial for protein solubility, then the positively charged amino acids, and finally the charge-neutral amino acids.


Asunto(s)
Dominios Proteicos , Proteínas/química , Agua/química , Aminoácidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Solubilidad , Propiedades de Superficie
7.
Proc Natl Acad Sci U S A ; 115(26): 6578-6583, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29895685

RESUMEN

Membraneless organelles are aggregates of disordered proteins that form spontaneously to promote specific cellular functions in vivo. The possibility of synthesizing membraneless organelles out of cells will therefore enable fabrication of protein-based materials with functions inherent to biological matter. Since random copolymers contain various compositions and sequences of solvophobic and solvophilic groups, they are expected to function in nonbiological media similarly to a set of disordered proteins in membraneless organelles. Interestingly, the internal environment of these organelles has been noted to behave more like an organic solvent than like water. Therefore, an adsorbed layer of random copolymers that mimics the function of disordered proteins could, in principle, protect and enhance the proteins' enzymatic activity even in organic solvents, which are ideal when the products and/or the reactants have limited solubility in aqueous media. Here, we demonstrate via multiscale simulations that random copolymers efficiently incorporate proteins into different solvents with the potential to optimize their enzymatic activity. We investigate the key factors that govern the ability of random copolymers to encapsulate proteins, including the adsorption energy, copolymer average composition, and solvent selectivity. The adsorbed polymer chains have remarkably similar sequences, indicating that the proteins are able to select certain sequences that best reduce their exposure to the solvent. We also find that the protein surface coverage decreases when the fluctuation in the average distance between the protein adsorption sites increases. The results herein set the stage for computational design of random copolymers for stabilizing and delivering proteins across multiple media.


Asunto(s)
Simulación por Computador , Composición de Medicamentos/métodos , Modelos Químicos , Polímeros/química , Proteínas/química , Adsorción , Proteínas Bacterianas/química , Hidrolasas de Éster Carboxílico/química , Diseño de Fármacos , Proteínas Fúngicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Modelos Moleculares , Compuestos Orgánicos , Elastasa Pancreática/química , Conformación Proteica , Solubilidad , Solventes , Subtilisina/química , Ubiquitina/química
8.
J Am Chem Soc ; 142(43): 18576-18582, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33048545

RESUMEN

The encapsulation of enzymes within porous materials has shown great promise, not only in protecting the enzymes from denaturation under nonbiological environments, but also, in some cases, in facilitating their enzymatic reaction rates at favorable reaction conditions. While a number of hypotheses have been developed to explain this phenomenon, the detailed structural changes of the enzymes upon encapsulation within the porous material, which are closely related to their activity, remain largely elusive. Herein, the structural change of cytochrome c (Cyt c) upon encapsulation within a hierarchical metal-organic framework, NU-1000, is investigated through a combination of experimental and computational methods, such as electron paramagnetic resonance, solid-state ultraviolet-visible spectroscopy, and all-atom explicit solvent molecular dynamics simulations. The enhanced catalytic performance of Cyt c after being encapsulated within NU-1000 is supported by the physical and in silico observations of a change around the heme ferric active center.


Asunto(s)
Citocromos c/metabolismo , Estructuras Metalorgánicas/química , Benzotiazoles/química , Biocatálisis , Dominio Catalítico , Citocromos c/química , Teoría Funcional de la Densidad , Hemo/química , Simulación de Dinámica Molecular , Oxidación-Reducción , Espectrofotometría , Ácidos Sulfónicos/química
9.
J Chem Inf Model ; 60(10): 5255-5264, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32846088

RESUMEN

The surface of proteins is vital in determining protein functions. Herein, a program, Protein Surface Printer (PSP), is built that performs multiple functions in quantifying protein surface domains. Two proteins, PETase and cytochrome P450, are used to validate that the program supports atomistic simulations with different combinations of programs and force fields. A case study is conducted on the structural analysis of the spike proteins of SARS-CoV-2 and SARS-CoV and the human cell receptor ACE2. Although the surface domains of both spike proteins are highly similar, their receptor-binding domains (RBDs) and the O-linked glycan domains are structurally different. The O-linked glycan domain of SARS-CoV-2 is highly positively charged, which may promote binding to negatively charged human cells.


Asunto(s)
Betacoronavirus/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Programas Informáticos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/fisiología , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/metabolismo , Unión Proteica , Dominios Proteicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
10.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316422

RESUMEN

We analyze the internal structure and hydration properties of poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt) oligoelectrolyte multilayers at early stages of their layer-by-layer growth process. Our study is based on large-scale molecular dynamics simulations with atomistic resolution that we presented recently [Sánchez et al., Soft Matter 2019, 15, 9437], in which we produced the first four deposition cycles of a multilayer obtained by alternate exposure of a flat silica substrate to aqueous electrolyte solutions of such polymers at 0.1M of NaCl. In contrast to any previous work, here we perform a local structural analysis that allows us to determine the dependence of the multilayer properties on the distance to the substrate. We prove that the large accumulation of water and ions next to the substrate observed in previous overall measurements actually decreases the degree of intrinsic charge compensation, but this remains as the main mechanism within the interface region. We show that the range of influence of the substrate reaches approximately 3 nm, whereas the structure of the outer region is rather independent from the position. This detailed characterization is essential for the development of accurate mesoscale models able to reach length and time scales of technological interest.


Asunto(s)
Electrólitos/química , Polietilenos/química , Compuestos de Amonio Cuaternario/química , Algoritmos , Modelos Moleculares , Modelos Teóricos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA