Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 210(4): 475-485, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602596

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteric coronavirus that causes severe watery diarrhea and even death in piglets. The neonatal Fc receptor (FcRn) is the only transport receptor for IgG. FcRn expressed by intestinal epithelial cells can transport IgG from breast milk to piglets to provide immune protection. Previous studies have shown that viral infection affects FcRn expression. In this study, we showed for the first time, to our knowledge, that FcRn expression can be influenced by methyltransferases. In addition, we found that PEDV inhibited FcRn protein synthesis in porcine small intestinal epithelial cells postinfection. Then, we found that PEDV interfered with the transcription of genes through aberrant methylation modification of the FcRn promoter. DNA methyltransferase 3b (DNMT3b) has been implicated in this process. Using a series of PEDV structural and nonstructural protein (nsp) expression plasmids, we showed that nsp13 plays an important role in this aberrant methylation modification. PEDV nsp13 can affect the NF-κB canonical pathway and promote DNMT3b protein expression by facilitating p65 protein binding to chromatin. PEDV caused aberrant methylation of the FcRn promoter via DNMT3b. The same phenomenon was found in animal experiments with large white piglets. IgG transcytosis demonstrated that PEDV nsp13 can inhibit bidirectional IgG transport by FcRn. In addition, the core region of nsp13 (230-597 aa) is critical for FcRn inhibition. Taken together, to our knowledge, our findings revealed a novel immune escape mechanism of PEDV and shed new light on the design and development of vaccines and drugs.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , FN-kappa B/metabolismo , Virus de la Diarrea Epidémica Porcina/genética , Transducción de Señal , Inmunoglobulina G
2.
Vet Immunol Immunopathol ; 240: 110317, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34461425

RESUMEN

The neonatal Fc receptor (FcRn) mediates the bidirectional transport of immunoglobulin G (IgG) across hyperpolarized epithelial cells. Overexpression of FcRn increases serum IgG and humoral immune response. Probiotics can improve the host's serum and intestinal mucosal IgG. However, whether probiotics regulate FcRn and its specific mechanism are still unclear. Our research showed that heat inactivated Clostridium butyricum CB1 (heat-inactivated CB1) up-regulated FcRn expression in porcine small intestinal epithelial (IPI-2I) cells. Furthermore, heat-inactivated CB1 stimulation activated the nuclear factor kappa B (NF-κB) signaling pathway. Moreover, FcRn expression decreased after blocking the NF-κB signaling pathway by NF-κB inhibitor BAY11-7028, suggesting that heat-inactivated CB1 induced FcRn expression via the NF-κB signaling pathway. Using small interfering RNAs (siRNAs), we found that knockdown of TLR2/4, MyD88 and TRIF reduced NF-κB activity induced by heat-inactivated CB1, as well as up-regulation of FcRn expression after heat-inactivated CB1 stimulation. Taken together, our data indicated that heat-inactivated CB1 up-regulated FcRn expression via TLR2/4-MyD88/TRIF-NF-κB signaling pathway. These results provided a new perspective for us to understand the enhancement of C. butyricum on intestinal mucosal immunity.


Asunto(s)
Clostridium butyricum , Intestino Delgado/citología , FN-kappa B , Receptores Fc/inmunología , Transducción de Señal , Proteínas Adaptadoras del Transporte Vesicular , Animales , Inmunoglobulina G , Intestino Delgado/inmunología , Factor 88 de Diferenciación Mieloide , Porcinos , Receptor Toll-Like 2 , Receptor Toll-Like 4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA