Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 13: 120, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25145611

RESUMEN

BACKGROUND: In the cryopreservation of blood, removing cryoprotectants from the cryopreserved blood safely and effectively is always being focused on. In our previous work, a dilution-filtration system was proposed to achieve the efficient clearance of cryoprotectants from the cryopreserved blood. METHOD: In this study, a theoretical method is presented to optimize the diluent flow rate in the system to further reduce the osmotic damage to red blood cells (RBCs) and shorten the washing time necessary to remove cryoprotective agents (CPAs), based on a discrete mass transfer concept. In the method, the diluent flow rate is automatically adjusted by a program code in each cycle to maximize the clearance of CPAs, whereas the volume of RBCs is always maintained below the upper volume tolerance limit. RESULTS: The results show that the optimized diluent flow rate can significantly decrease the washing time of CPAs. The washing time under the optimized diluent flow rate can be reduced by over 50%, compared to the one under the fixed diluent flow rate. In addition, the advantage of our method becomes more significant when the blood flow rate is lower, the dilution region volume is larger, the initial CPA concentration is higher, or the cell-swelling limit set by the system is smaller. CONCLUSION: The proposed method for the dilution-filtration system is an ideal solution for not only guaranteeing the volume safety of RBCs but also shortening the washing time of CPAs. In practice, the optimization strategies provided here will be useful in the rapid preparation of cryopreserved blood for clinical use.


Asunto(s)
Crioprotectores/aislamiento & purificación , Modelos Teóricos , Suero/química , Conservación de la Sangre/métodos , Criopreservación/métodos , Eritrocitos/química , Humanos , Soluciones/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-37022068

RESUMEN

With the improvement of quality of life, people are more and more concerned about the quality of sleep. The electroencephalogram (EEG)-based sleep stage classification is a good guide for sleep quality and sleep disorders. At this stage, most automatic staging neural networks are designed by human experts, and this process is time-consuming and laborious. In this paper, we propose a novel neural architecture search (NAS) framework based on bilevel optimization approximation for EEG-based sleep stage classification. The proposed NAS architecture mainly performs the architectural search through a bilevel optimization approximation, and the model is optimized by search space approximation and search space regularization with parameters shared among cells. Finally, we evaluated the performance of the model searched by NAS on the Sleep-EDF-20, Sleep-EDF-78 and SHHS datasets with an average accuracy of 82.7%, 80.0% and 81.9%, respectively. The experimental results show that the proposed NAS algorithm provides some reference for the subsequent automatic design of networks for sleep classification.

3.
Ultrasonics ; 119: 106608, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34793999

RESUMEN

Synthetic aperture (SA) ultrasound imaging can obtain images with high-resolution owing to its ability to dynamically focus in both directions. The signal-to-noise ratio (SNR) of SA imaging is poor because the pulse energy using one array element is quite low. Thus, the SA method with bidirectional pixel-based focusing (SA-BiPBF) was previously proposed as a solution to this challenge. However, using the nonadaptive delay-and-sum (DAS) beamforming still limits its imaging performance. This study proposes an adaptive scaled coherence factor (AscCF) for SA-BiPBF to further boost the image quality. The AscCF exploits generalized coherence factor (GCF) to measure the signal coherence to adaptively adapt the parameters in SNR estimation rather than fixed ones. Comparisons were made with several other weighting techniques by performing simulations and experiments for performance evaluation. Results confirm that AscCF applied to SA-BiPBF offers a good image contrast while reservation of the speckle pattern. AscCF achieves maximal improvements of contrast ratio (CR) by 48.5% and 47.76 % compared with scaled coherence factor (scCF), respectively in simulation and experiment. Simultaneously, the maximum of improvements in speckle signal-to-noise ratio (sSNR) of AscCF are 11.28 % and 20.01 % upon scCF in simulation and experiment, respectively. From the in vivo result, it also appears a potential for AscCF to act in clinical situations to better detect lesion and retain speckle pattern.


Asunto(s)
Ultrasonografía/métodos , Acústica , Arterias Carótidas/diagnóstico por imagen , Simulación por Computador , Quistes/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Relación Señal-Ruido
4.
Comput Biol Med ; 116: 103522, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739004

RESUMEN

Coherence-based weighting techniques have been widely studied to weight beamsummed data to improve image quality in ultrasound imaging. Although generalized coherence factor (GCF) enhances the robustness of coherence factor (CF) with preserved speckle pattern by including some incoherent components, the side lobe suppression performance is insufficient due to constant cut-off frequency M0. To address this problem, we introduced in this paper a dynamic GCF method, referred to as DGCF-C, based on the amplitude standard deviation and the convolution output of aperture data. The cut-off frequency is adaptively selected for GCF at each imaging point using the amplitude standard deviation of aperture data. Moreover, the convolution output of aperture data is used to calculate the dynamic GCF. The proposed method is evaluated in simulation and tissue-mimicking phantom studies. The image quality was analyzed in terms of resolution, contrast ratio (CR), generalized contrast-to-noise ratio (GCNR), speckle signal-to-noise ratio (sSNR), and signal-to-noise ratio (SNR). The results demonstrate that DGCF-C (Mmax=2) achieves mean resolution improvements of 35.1% in simulation, and 32.6% in experiment, compared with GCF (M0=1). Moreover, DGCF-C (Mmax=4) outperforms GCF (M0=2) with an average GCNR improvement of 13.5% and an average sSNR improvement of 15.2%, which indicates the better-preservation of speckle.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador , Ultrasonografía/métodos , Algoritmos , Simulación por Computador , Quistes/diagnóstico por imagen , Humanos , Modelos Biológicos , Fantasmas de Imagen
5.
Comput Math Methods Med ; 2014: 792302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25580156

RESUMEN

In the process of removing cryoprotectants from cryopreserved blood, the theoretically optimal operating condition, which is based on the assumption that the distribution of red blood cells is uniform, is often used to reduce or even avoid the hypotonic damage to cells. However, due to the polydispersity of cells, the optimal condition is actually not reliable. In this study, based on the discrete concept developed in our previous work, the effect of the polydispersity on the recovery rate of cells in the dilution-filtration system was statistically investigated by assigning three random parameters, isotonic cell volume, cell surface area, and osmotically inactive cell volume, to cells in small units of blood. The results show that, due to the polydispersity, the real recovery rate deviates from the ideal value that is based on uniform distribution. The deviation significantly increases with the standard errors of cell parameters, and it can be also magnified by high cryoprotectant concentrations. Under the effect of polydispersity, the uniform distribution-based optimized blood or diluent flow rate is not perfect. In practice, one should adopt a more conservative blood or diluent flow rate so that the hypotonic damage to cells can be further reduced.


Asunto(s)
Criopreservación/métodos , Crioprotectores/química , Eritrocitos/citología , Algoritmos , Velocidad del Flujo Sanguíneo , Conservación de la Sangre , Tamaño de la Célula , Supervivencia Celular , Filtración , Humanos , Ósmosis , Reproducibilidad de los Resultados , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA