Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Chem Soc ; 146(10): 6697-6705, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38419157

RESUMEN

Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.

2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850614

RESUMEN

Perovskite CsPbBr3 semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties, demonstrating strong potential for γ-radiation and X-ray detection at room temperature. However, the total dose effects of the perovskite CsPbBr3 must be considered when working in a long-term radiation environment. In this work, the Schottky type of perovskite CsPbBr3 detector was fabricated. Their electrical characteristics and γ-ray response were investigated before and after 60Co γ ray irradiation with 100 and 200 krad (Si) doses. The γ-ray response of the Schottky-type planar CsPbBr3 detector degrades significantly with the increase in total dose. At the total dose of 200 krad(Si), the spectral resolving ability to γ-ray response of the CsPbBr3 detector has disappeared. However, with annealing at room temperature for one week, the device's performance was partially recovered. Therefore, these results indicate that the total dose effects strongly influence the detector performance of the perovskite CsPbBr3 semiconductor. Notably, it is concluded that the radiation-induced defects are not permanent, which could be mitigated even at room temperature. We believe this work could guide the development of perovskite detectors, especially under harsh radiation conditions.

3.
BMC Med Inform Decis Mak ; 20(Suppl 1): 72, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32349764

RESUMEN

BACKGROUND: Semantic textual similarity (STS) is a fundamental natural language processing (NLP) task which can be widely used in many NLP applications such as Question Answer (QA), Information Retrieval (IR), etc. It is a typical regression problem, and almost all STS systems either use distributed representation or one-hot representation to model sentence pairs. METHODS: In this paper, we proposed a novel framework based on a gated network to fuse distributed representation and one-hot representation of sentence pairs. Some current state-of-the-art distributed representation methods, including Convolutional Neural Network (CNN), Bi-directional Long Short Term Memory networks (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT), were used in our framework, and a system based on this framework was developed for a shared task regarding clinical STS organized by BioCreative/OHNLP in 2018. RESULTS: Compared with the systems only using distributed representation or one-hot representation, our method achieved much higher Pearson correlation. Among all distributed representations, BERT performed best. The highest Person correlation of our system was 0.8541, higher than the best official one of the BioCreative/OHNLP clinical STS shared task in 2018 (0.8328) by 0.0213. CONCLUSIONS: Distributed representation and one-hot representation are complementary to each other and can be fused by gated network.


Asunto(s)
Almacenamiento y Recuperación de la Información/métodos , Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Semántica , Humanos , Lenguaje
4.
Angew Chem Int Ed Engl ; 59(35): 15209-15214, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32432349

RESUMEN

Radio-photoluminescence (RPL) materials display a distinct radiation-induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal-ion-doped inorganic materials. Here we document the RPL of a metal-organic framework (MOF) for the first time: X-ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X-ray attenuator. These radicals afford new emission features in both UV-excited and X-ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF-based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.

5.
Sci Total Environ ; 948: 174816, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019287

RESUMEN

Utilizing the framework of environmental health risk assessment and healing, the article reviews the effectiveness and potential of green space systems in mitigating the impact of high temperatures, promoting mental health, and improving the risk characteristics of high-temperature heat waves. We utilized CiteSpace software to conduct a time-zone analysis of the relationship between heatwaves, green spaces, and health using clustered data from 2001 to 2023. This study evaluates the role of green space systems in mitigating high temperatures and enhancing mental health within the environmental health risk assessment framework. Using CiteSpace software, we analyzed literature from 2001 to 2023, focusing on the interactions among heatwaves, green spaces, and health. Our results indicate that most existing research concentrates on hazard identification, with insufficient exploration of the dose-response relationships between green spaces and temperature reduction. Quantitative studies on green space design and spatial optimization are scarce, and guidance on effective configurations remains limited. Additionally, the health impacts of heatwaves vary by region, with a noticeable imbalance in research focus; Asia and Africa, in particular, are underrepresented in studies addressing heatwave effects. We conclude that effective mitigation strategies require: (1) a comprehensive environmental health risk assessment framework that integrates advanced methods like big data analysis and geospatial simulations to improve green space planning and design; (2) further theoretical exploration into the mechanisms by which green spaces regulate temperature and mental health, including detailed analysis of spatiotemporal patterns and the functional optimization of green space structures; and (3) the development of robust parameterized design guidance based on specific therapeutic dosages (green space stimulus) to optimize configurations and enhance the effectiveness of green spaces in mitigating adverse mental health impacts from deteriorating thermal environments. Future research should prioritize underrepresented regions, focusing on exposure levels, dose-response relationships, and high-temperature warning systems while fostering multidisciplinary collaboration to develop effective urban planning and climate adaptation strategies.

6.
ACS Cent Sci ; 9(9): 1827-1834, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37780354

RESUMEN

Storage phosphors displaying defect emissions are indispensable in technologically advanced radiation dosimeters. The current dosimeter is limited to the passive detection mode, where ionizing radiation-induced deep-trap defects must be activated by external stimulation such as light or heat. Herein, we designed a new type of shallow-trap storage phosphor by controlling the dopant amounts of Ag+ and Bi3+ in the host lattice of Cs2NaInCl6. A distinct phenomenon of X-ray-induced emission (XIE) is observed for the first time in an intrinsically nonemissive perovskite. The intensity of XIE exhibits a quantitative relationship with the accumulated dose, enabling a real-time radiation dosimeter. Thermoluminescence and in situ X-ray photoelectron spectroscopy verify that the emission originates from the radiative recombination of electrons and holes associated with X-ray-induced traps. Theoretical calculations reveal the evolution process of Cl-Cl dimers serving as hole trap states. Analysis of temperature-dependent radioluminescence spectra provides evidence that the intrinsic electron-phonon interaction in 0.005 Ag+@ Cs2NaInCl6 is significantly reduced under X-ray irradiation. Moreover, 0.025 Bi3+@ Cs2NaInCl6 shows an elevated sensitivity to the accumulated dose with a broad response range from 0.08 to 45.05 Gy. This work discloses defect manipulation in halide double perovskites, giving rise to distinct shallow-trap storage phosphors that bridge traditional deep-trap storage phosphors and scintillators and enabling a brand-new type of material for real-time radiation dosimetry.

7.
Environ Pollut ; 251: 945-951, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31234261

RESUMEN

The removals of arsenic and selenium pollutants are always urgent desires for the water security. In this study, both sorption and catalysis strategies were combined for the effective removals of As(V) and Se(VI) over magnetic graphene oxide sheets (GOs)-oxidized carbon nanotubes (OCNTs) hydrogels. The sorption behavior facilitated the operation of catalysis reactions, meanwhile, the catalytic reduction promoted the release of occupied sorption sites and then restarted a new sorption-catalysis cycle. The synergic effect of sorption and catalysis realized 258.2 mg g-1 for As(V) enrichment capacity on MPG2T1, and ultra-fast sorption and catalysis equilibriums were identified within 9 min. In the case of Se(VI), a moderate enrichment performance was observed to be 46.2 mg g-1. Similarly, the ultra-fast sorption and reduction of Se(VI) were realized within 2 min. In the competition experiments, only SO42-, SO32-, and HPO42- showed interference for As(V) and Se(VI) removals. These results testified the superiority of the synergy effect of sorption and catalysis, and the feasibility of 3D magnetic GOs-OCNTs hydrogel in practical implementations.


Asunto(s)
Arsénico/química , Grafito/química , Nanotubos de Carbono/química , Selenio/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Catálisis , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA