Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(3): 2302-2311, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207327

RESUMEN

Li-excess oxide cathodes have received increasing attention due to their high capacity derived from accumulated cation and anion redox activity. However, Li-excess layered oxides suffer from capacity and voltage decay due to the irreversible phase transition, while cation-disordered cathodes also have the problems of poor cycling stability and rate capability. The rocksalt oxides with a layered-disordered coexistence nanostructure can combine the advantages of both phases such as the inherent high capacity of Li-excess oxides, good rate capability of the layered phase, and structural stability resulting from the intergrown disordered phase. Herein, for rational design, we developed a descriptor by correlating the ionic radius and electronic configuration to predict layered, cation-disordered, and coexistent structures of Li-excess cathode materials. Accordingly, we experimentally synthesized Li1.2Ni0.4Mn0.2Nb0.2O2 oxide with a coexistent structure in which the layered and disordered phases are well combined in the nanoscale region, achieving a high capacity (312 mAh g-1) with good cycling stability and rate capability. The design principle with composition predicting structure provides a valuable strategy in controllably designing and preparing Li-excess cathode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA