Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phys Chem Chem Phys ; 21(22): 11883-11891, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31123740

RESUMEN

Early diagnosis of diseases by contrast-enhanced magnetic resonance imaging (MRI) using iron oxide superparamagnetic nanoparticles (IOSNPs) has been extensively investigated due to the good biocompatibility of modified IOSNPs. However, the low magnetic sensitivity of IOSNPs still inflicts a certain limitation on their further application. In this study, we employed first-principles calculations based on spin-polarized density functional theory (SDFT) to find the optimal dysprosium-doped scheme for improving the magnetic sensitivity of IOSNPs. Elicited from the optimal doping scheme, we synthesized a sort of ultrasmall γ-iron oxide superparamagnetic nanoparticle by a special phase transfer-coprecipitation method. The appropriately Dy-doped γ-IOSNPs coated with short-chain polyethylene glycol are small in hydrodynamic size and highly dispersed with effectively improved superparamagnetism for enhancing T2-weighted MRI relaxivity, which is well consistent with the SDFT prediction. The measured spin-spin relaxivity r2 is 123.2 s-1 mM-1, nearly double that of the pure γ-IOSNPs (67.8 s-1 mM-1) and substantially surpassing that of both clinically-approved T2 contrast agents Feridex and Resivist. The low dysprosium doping does not induce notable nanotoxicity for IOSNPs, but contributes sufficiently to their high relaxation performance instead, which endows the Dy-doped γ-IOSNPs with high potential as a better T2-weighted MRI contrast medium. Both the method and the nanomagnets reported in this study are expected to promote studies on designing and preparing high-performance MRI contrast agents as well as computational materials.

2.
J Environ Sci (China) ; 50: 103-108, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28034419

RESUMEN

TiO2 nanotube (TiNT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na2SO4 as supporting electrolyte at pH10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98×10-2min-1 at pH10.7 and a faster degradation rate of 6.34×10-2min-1 was obtained at pH3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO2 film electrode fabricated by sol-gel method. Finally, the effect of chloride concentration was also discussed.


Asunto(s)
Cloro/química , Electrodos , Modelos Químicos , Nanotubos/química , Procesos Fotoquímicos , Titanio/química , Amoníaco , Técnicas Electroquímicas , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo
3.
Water Sci Technol ; 72(11): 1940-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26606087

RESUMEN

Coal gangue, sandy soil and clay (mass ratio 45:4:1) as goaf filling materials acquired from coal mining processes were applied to remove Fe and Mn effectively from mining drainage. The results of an adsorption kinetic study showed that the Fe adsorption equation was y=21.454y+8.4712, R2=0.9924 and the Mn adsorption equation was y=7.5409x+0.905, R2=0.9957. Meanwhile, the goaf filling materials had low desorption capacity (Fe 6.765 µg/g, Mn 1.52 µg/g) and desorption ratio (Fe 8.98%, Mn 11.04%). Experiments demonstrated that Fe and Mn from mining drainage could be removed stably at a flow rate of 1.2 L/min, Fe inlet concentration of less than 40 mg/L, Mn inlet concentration of less than 2 mg/L and neutral or alkaline conditions. During a procedure of continuous experiments, the effluent quality could meet the requirement of the 'Code for Engineering Design of Sewage Regeneration-GB503352-2002'. A real-application project using goaf filling materials to treat mining drainage in Shendong coal mine showed that the average cost per ton of mining drainage was about 0.55 RMB, which could bring about considerable economic benefit for coal mining enterprises.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hierro/química , Manganeso/química , Aguas del Alcantarillado/química , Purificación del Agua/métodos , Adsorción , Carbón Mineral/análisis , Minas de Carbón , Drenaje , Concentración de Iones de Hidrógeno , Cinética
4.
Biology (Basel) ; 13(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39194528

RESUMEN

In this study, a systematic taxonomic analysis was carried out on the lichen genus Peltula, collected from Helan Mountain in China; three new species (Peltula helanense, P. overlappine, and P. reticulata) and a new record (P. crispatula (Nyl.) Egea) for China were identified. Four species were identified by morph-anatomical, chemical, and phylogenetic analyses by combining two gene loci (ITS and LSU). Peltula helanense is with tiny individual thalli up to 1mm, attached by creamy-white cylindrical rhizoids and apothecia filling the whole squamule. Peltula overlappine is characterized by thallus squamulose forming rosette-shaped patches and squamules with distinctive thickened margins. Peltula reticulata is characterized by brownish brown thallus and squamules with densely reticulate upper surface. P. crispatula is characterized by irregular squamules attached to a tuft of hyphae. The four species are described in detail, compared, and discussed with similar species, and images of morpho-anatomical structures of the four species are also provided. Moreover, a key to the species of Peltula from Helan Mountain is provided. The results enrich the data of the genus Peltula and also indicate that the rich diversity of lichen species in Helan Mountain is worthy of in-depth study.

5.
Membranes (Basel) ; 10(8)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784612

RESUMEN

Nowadays, the standards of discharging are gradually becoming stricter, since much attention has been paid to the protection of natural water resources around the world. Therefore, it is urgent to upgrade the existing wastewater treatment plant (WWTP), to improve the effluent quality, and reduce the discharged pollutants to the natural environment. In this paper, taking the "Liaocheng UESH (UE Envirotech) WWTP in Shandong province of China" as an example, the existing problems and the detailed measures for a renovation were systemically discussed by technical and economic evaluation, before and after the renovation. During the renovation, the ultrafiltration membrane was added as the final stage of the designed process route, while upgrading the operation conditions of biochemical process at the same time. After the renovation, the removal rates of chemical oxygen demand (CODcr), biochemical oxygen demand (BOD5), total phosphorus (TP) and other major pollutants were improved greatly, and the results fully achieved the standards of surface water class IV. The ultrafiltration system performs a stable permeability around 1.5 LMH/kPa. Besides, the economic performance of the renovation was evaluated via the net present value (NPV) method. The result reveals that the NPV of the renovation of the WWTP within the 20 year life cycle is CNY 72.51 million and the overall investment cost can be recovered within the fourth year after the reoperation of the plant. This research does not only indicate that it is feasible to take an ultrafiltration membrane as the main technology, both from technical and economic perspectives, while upgrading the biochemical process section in the meantime, but also provides a new strategy for the renovation of existing WWTPs to achieve more stringent emission standards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA