Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Artif Life ; 30(1): 106-135, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393968

RESUMEN

Nowadays, interdisciplinary fields between Artificial Life, artificial intelligence, computational biology, and synthetic biology are increasingly emerging into public view. It is necessary to reconsider the relations between the material body, identity, the natural world, and the concept of life. Art is known to pave the way to exploring and conveying new possibilities. This survey provides a literature review on recent works of Artificial Life in visual art during the past 40 years, specifically in the computational and software domain. Having proposed a set of criteria and a taxonomy, we briefly analyze representative artworks of different categories. We aim to provide a systematic overview of how artists are understanding nature and creating new life with modern technology.


Asunto(s)
Arte , Inteligencia Artificial , Vida Artificial , Programas Informáticos , Encuestas y Cuestionarios
2.
Artículo en Inglés | MEDLINE | ID: mdl-39255131

RESUMEN

Data videos increasingly becoming a popular data storytelling form represented by visual and audio integration. In recent years, more and more researchers have explored many narrative structures for effective and attractive data storytelling. Meanwhile, the Hero's Journey provides a classic narrative framework specific to the Hero's story that has been adopted by various mediums. There are continuous discussions about applying Hero's Journey to data stories. However, so far, little systematic and practical guidance on how to create a data video for a specific story type like the Hero's Journey, as well as how to manipulate its sound and visual designs simultaneously. To fulfill this gap, we first identified 48 data videos aligned with the Hero's Journey as the common storytelling from 109 high-quality data videos. Then, we examined how existing practices apply Hero's Journey for creating data videos. We coded the 48 data videos in terms of the narrative stages, sound design, and visual design according to the Hero's Journey structure. Based on our findings, we proposed a design space to provide practical guidance on the narrative, visual, and sound custom design for different narrative segments of the hero's journey (i.e., Departure, Initiation, Return) through data video creation. To validate our proposed design space, we conducted a user study where 20 participants were invited to design data videos with and without our design space guidance, which was evaluated by two experts. Results show that our design space provides useful and practical guidance for data storytellers effectively creating data videos with the Hero's Journey.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39264775

RESUMEN

In this study, we address the growing issue of misleading charts, a prevalent problem that undermines the integrity of information dissemination. Misleading charts can distort the viewer's perception of data, leading to misinterpretations and decisions based on false information. The development of effective automatic detection methods for misleading charts is an urgent field of research. The recent advancement of multimodal Large Language Models (LLMs) has introduced a promising direction for addressing this challenge. We explored the capabilities of these models in analyzing complex charts and assessing the impact of different prompting strategies on the models' analyses. We utilized a dataset of misleading charts collected from the internet by prior research and crafted nine distinct prompts, ranging from simple to complex, to test the ability of four different multimodal LLMs in detecting over 21 different chart issues. Through three experiments-from initial exploration to detailed analysis-we progressively gained insights into how to effectively prompt LLMs to identify misleading charts and developed strategies to address the scalability challenges encountered as we expanded our detection range from the initial five issues to 21 issues in the final experiment. Our findings reveal that multimodal LLMs possess a strong capability for chart comprehension and critical thinking in data interpretation. There is significant potential in employing multimodal LLMs to counter misleading information by supporting critical thinking and enhancing visualization literacy. This study demonstrates the applicability of LLMs in addressing the pressing concern of misleading charts.

4.
IEEE Trans Vis Comput Graph ; 30(1): 955-964, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37889814

RESUMEN

Although visualization tools are widely available and accessible, not everyone knows the best practices and guidelines for creating accurate and honest visual representations of data. Numerous books and articles have been written to expose the misleading potential of poorly constructed charts and teach people how to avoid being deceived by them or making their own mistakes. These readings use various rhetorical devices to explain the concepts to their readers. In our analysis of a collection of books, online materials, and a design workshop, we identified six common explanation methods. To assess the effectiveness of these methods, we conducted two crowdsourced studies (each with N=125) to evaluate their ability to teach and persuade people to make design changes. In addition to these existing methods, we brought in the idea of Explorable Explanations, which allows readers to experiment with different chart settings and observe how the changes are reflected in the visualization. While we did not find significant differences across explanation methods, the results of our experiments indicate that, following the exposure to the explanations, the participants showed improved proficiency in identifying deceptive charts and were more receptive to proposed alterations of the visualization design. We discovered that participants were willing to accept more than 60% of the proposed adjustments in the persuasiveness assessment. Nevertheless, we found no significant differences among different explanation methods in convincing participants to accept the modifications.

5.
IEEE Trans Vis Comput Graph ; 30(1): 944-954, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37878446

RESUMEN

Computational notebooks have become increasingly popular for exploratory data analysis due to their ability to support data exploration and explanation within a single document. Effective documentation for explaining chart findings during the exploration process is essential as it helps recall and share data analysis. However, documenting chart findings remains a challenge due to its time-consuming and tedious nature. While existing automatic methods alleviate some of the burden on users, they often fail to cater to users' specific interests. In response to these limitations, we present InkSight, a mixed-initiative computational notebook plugin that generates finding documentation based on the user's intent. InkSight allows users to express their intent in specific data subsets through sketching atop visualizations intuitively. To facilitate this, we designed two types of sketches, i.e., open-path and closed-path sketch. Upon receiving a user's sketch, InkSight identifies the sketch type and corresponding selected data items. Subsequently, it filters data fact types based on the sketch and selected data items before employing existing automatic data fact recommendation algorithms to infer data facts. Using large language models (GPT-3.5), InkSight converts data facts into effective natural language documentation. Users can conveniently fine-tune the generated documentation within InkSight. A user study with 12 participants demonstrated the usability and effectiveness of InkSight in expressing user intent and facilitating chart finding documentation.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38427541

RESUMEN

With the rise of short-form video platforms and the increasing availability of data, we see the potential for people to share short-form videos embedded with data in situ (e.g., daily steps when running) to increase the credibility and expressiveness of their stories. However, creating and sharing such videos in situ is challenging since it involves multiple steps and skills (e.g., data visualization creation and video editing), especially for amateurs. By conducting a formative study (N=10) using three design probes, we collected the motivations and design requirements. We then built VisTellAR, a mobile AR authoring tool, to help amateur video creators embed data visualizations in short-form videos in situ. A two-day user study shows that participants (N=12) successfully created various videos with data visualizations in situ and they confirmed the ease of use and learning. AR pre-stage authoring was useful to assist people in setting up data visualizations in reality with more designs in camera movements and interaction with gestures and physical objects to storytelling.

7.
IEEE Trans Vis Comput Graph ; 30(6): 2955-2967, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38619948

RESUMEN

Table tennis is a sport that demands high levels of technical proficiency and body coordination from players. Biomechanical fingerprints can provide valuable insights into players' habitual movement patterns and characteristics, allowing them to identify and improve technical weaknesses. Despite the potential, few studies have developed effective methods for generating such fingerprints. To address this gap, we propose TacPrint, a framework for generating a biomechanical fingerprint for each player. TacPrint leverages machine learning techniques to extract comprehensive features from biomechanics data collected by inertial measurement units (IMU) and employs the attention mechanism to enhance model interpretability. After generating fingerprints, TacPrint provides a visualization system to facilitate the exploration and investigation of these fingerprints. In order to validate the effectiveness of the framework, we designed an experiment to evaluate the model's performance and conducted a case study with the system. The results of our experiment demonstrated the high accuracy and effectiveness of the model. Additionally, we discussed the potential of TacPrint to be extended to other sports.


Asunto(s)
Gráficos por Computador , Aprendizaje Automático , Tenis , Humanos , Tenis/fisiología , Fenómenos Biomecánicos/fisiología , Masculino , Adulto Joven , Adulto
8.
Artículo en Inglés | MEDLINE | ID: mdl-38743554

RESUMEN

Data charts are prevalent across various fields due to their efficacy in conveying complex data relationships. However, static charts may sometimes struggle to engage readers and efficiently present intricate information, potentially resulting in limited understanding. We introduce "Live Charts," a new format of presentation that decomposes complex information within a chart and explains the information pieces sequentially through rich animations and accompanying audio narration. We propose an automated approach to revive static charts into Live Charts. Our method integrates GNN-based techniques to analyze the chart components and extract data from charts. Then we adopt large natural language models to generate appropriate animated visuals along with a voice-over to produce Live Charts from static ones. We conducted a thorough evaluation of our approach, which involved the model performance, use cases, a crowd-sourced user study, and expert interviews. The results demonstrate Live Charts offer a multi-sensory experience where readers can follow the information and understand the data insights better. We analyze the benefits and drawbacks of Live Charts over static charts as a new information consumption experience.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38768002

RESUMEN

Impact dynamics are crucial for estimating the growth patterns of NFT projects by tracking the diffusion and decay of their relative appeal among stakeholders. Machine learning methods for impact dynamics analysis are incomprehensible and rigid in terms of their interpretability and transparency, whilst stakeholders require interactive tools for informed decision-making. Nevertheless, developing such a tool is challenging due to the substantial, heterogeneous NFT transaction data and the requirements for flexible, customized interactions. To this end, we integrate intuitive visualizations to unveil the impact dynamics of NFT projects. We first conduct a formative study and summarize analysis criteria, including substitution mechanisms, impact attributes, and design requirements from stakeholders. Next, we propose the Minimal Substitution Model to simulate substitutive systems of NFT projects that can be feasibly represented as node-link graphs. Particularly, we utilize attribute-aware techniques to embed the project status and stakeholder behaviors in the layout design. Accordingly, we develop a multi-view visual analytics system, namely NFTracer, allowing interactive analysis of impact dynamics in NFT transactions. We demonstrate the informativeness, effectiveness, and usability of NFTracer by performing two case studies with domain experts and one user study with stakeholders. The studies suggest that NFT projects featuring a higher degree of similarity are more likely to substitute each other. The impact of NFT projects within substitutive systems is contingent upon the degree of stakeholders' influx and projects' freshness.

10.
IEEE Trans Vis Comput Graph ; 30(6): 2981-2994, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625782

RESUMEN

The study of cultural artifact provenance, tracing ownership and preservation, holds significant importance in archaeology and art history. Modern technology has advanced this field, yet challenges persist, including recognizing evidence from diverse sources, integrating sociocultural context, and enhancing interactive automation for comprehensive provenance analysis. In collaboration with art historians, we examined the handscroll, a traditional Chinese painting form that provides a rich source of historical data and a unique opportunity to explore history through cultural artifacts. We present a three-tiered methodology encompassing artifact, contextual, and provenance levels, designed to create a "Biography" for handscroll. Our approach incorporates the application of image processing techniques and language models to extract, validate, and augment elements within handscroll using various cultural heritage databases. To facilitate efficient analysis of non-contiguous extracted elements, we have developed a distinctive layout. Additionally, we introduce ScrollTimes, a visual analysis system tailored to support the three-tiered analysis of handscroll, allowing art historians to interactively create biographies tailored to their interests. Validated through case studies and expert interviews, our approach offers a window into history, fostering a holistic understanding of handscroll provenance and historical significance.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37721882

RESUMEN

Automated visualization recommendation facilitates the rapid creation of effective visualizations, which is especially beneficial for users with limited time and limited knowledge of data visualization. There is an increasing trend in leveraging machine learning (ML) techniques to achieve an end-to-end visualization recommendation. However, existing ML-based approaches implicitly assume that there is only one appropriate visualization for a specific dataset, which is often not true for real applications. Also, they often work like a black box, and are difficult for users to understand the reasons for recommending specific visualizations. To fill the research gap, we propose AdaVis, an adaptive and explainable approach to recommend one or multiple appropriate visualizations for a tabular dataset. It leverages a box embedding-based knowledge graph to well model the possible one-to-many mapping relations among different entities (i.e., data features, dataset columns, datasets, and visualization choices). The embeddings of the entities and relations can be learned from dataset-visualization pairs. Also, AdaVis incorporates the attention mechanism into the inference framework. Attention can indicate the relative importance of data features for a dataset and provide fine-grained explainability. Our extensive evaluations through quantitative metric evaluations, case studies, and user interviews demonstrate the effectiveness of AdaVis.

12.
IEEE Trans Vis Comput Graph ; 29(1): 690-700, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36179003

RESUMEN

Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However, creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective ML-based visualization recommenders without beforehand training datasets.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37883264

RESUMEN

Recently, large pretrained language models have achieved compelling performance on commonsense benchmarks. Nevertheless, it is unclear what commonsense knowledge the models learn and whether they solely exploit spurious patterns. Feature attributions are popular explainability techniques that identify important input concepts for model outputs. However, commonsense knowledge tends to be implicit and rarely explicitly presented in inputs. These methods cannot infer models' implicit reasoning over mentioned concepts. We present CommonsenseVIS, a visual explanatory system that utilizes external commonsense knowledge bases to contextualize model behavior for commonsense question-answering. Specifically, we extract relevant commonsense knowledge in inputs as references to align model behavior with human knowledge. Our system features multi-level visualization and interactive model probing and editing for different concepts and their underlying relations. Through a user study, we show that CommonsenseVIS helps NLP experts conduct a systematic and scalable visual analysis of models' relational reasoning over concepts in different situations.

14.
IEEE Trans Vis Comput Graph ; 29(3): 1638-1650, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34780329

RESUMEN

Data visualizations have been increasingly used in oral presentations to communicate data patterns to the general public. Clear verbal introductions of visualizations to explain how to interpret the visually encoded information are essential to convey the takeaways and avoid misunderstandings. We contribute a series of studies to investigate how to effectively introduce visualizations to the audience with varying degrees of visualization literacy. We begin with understanding how people are introducing visualizations. We crowdsource 110 introductions of visualizations and categorize them based on their content and structures. From these crowdsourced introductions, we identify different introduction strategies and generate a set of introductions for evaluation. We conduct experiments to systematically compare the effectiveness of different introduction strategies across four visualizations with 1,080 participants. We find that introductions explaining visual encodings with concrete examples are the most effective. Our study provides both qualitative and quantitative insights into how to construct effective verbal introductions of visualizations in presentations, inspiring further research in data storytelling.

15.
IEEE Trans Vis Comput Graph ; 29(1): 591-601, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155452

RESUMEN

Reference-based cell-type annotation can significantly reduce time and effort in single-cell analysis by transferring labels from a previously-annotated dataset to a new dataset. However, label transfer by end-to-end computational methods is challenging due to the entanglement of technical (e.g., from different sequencing batches or techniques) and biological (e.g., from different cellular microenvironments) variations, only the first of which must be removed. To address this issue, we propose Polyphony, an interactive transfer learning (ITL) framework, to complement biologists' knowledge with advanced computational methods. Polyphony is motivated and guided by domain experts' needs for a controllable, interactive, and algorithm-assisted annotation process, identified through interviews with seven biologists. We introduce anchors, i.e., analogous cell populations across datasets, as a paradigm to explain the computational process and collect user feedback for model improvement. We further design a set of visualizations and interactions to empower users to add, delete, or modify anchors, resulting in refined cell type annotations. The effectiveness of this approach is demonstrated through quantitative experiments, two hypothetical use cases, and interviews with two biologists. The results show that our anchor-based ITL method takes advantage of both human and machine intelligence in annotating massive single-cell datasets.


Asunto(s)
Inteligencia Artificial , Gráficos por Computador , Humanos , Análisis de la Célula Individual/métodos , Aprendizaje Automático , Análisis de Datos
16.
IEEE Trans Vis Comput Graph ; 29(6): 3024-3038, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35120004

RESUMEN

Graph Neural Networks (GNNs) aim to extend deep learning techniques to graph data and have achieved significant progress in graph analysis tasks (e.g., node classification) in recent years. However, similar to other deep neural networks like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), GNNs behave like a black box with their details hidden from model developers and users. It is therefore difficult to diagnose possible errors of GNNs. Despite many visual analytics studies being done on CNNs and RNNs, little research has addressed the challenges for GNNs. This paper fills the research gap with an interactive visual analysis tool, GNNLens, to assist model developers and users in understanding and analyzing GNNs. Specifically, Parallel Sets View and Projection View enable users to quickly identify and validate error patterns in the set of wrong predictions; Graph View and Feature Matrix View offer a detailed analysis of individual nodes to assist users in forming hypotheses about the error patterns. Since GNNs jointly model the graph structure and the node features, we reveal the relative influences of the two types of information by comparing the predictions of three models: GNN, Multi-Layer Perceptron (MLP), and GNN Without Using Features (GNNWUF). Two case studies and interviews with domain experts demonstrate the effectiveness of GNNLens in facilitating the understanding of GNN models and their errors.

17.
IEEE Trans Vis Comput Graph ; 29(1): 1026-1036, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36179000

RESUMEN

The last decade has witnessed many visual analytics (VA) systems that make successful applications to wide-ranging domains like urban analytics and explainable AI. However, their research rigor and contributions have been extensively challenged within the visualization community. We come in defence of VA systems by contributing two interview studies for gathering critics and responses to those criticisms. First, we interview 24 researchers to collect criticisms the review comments on their VA work. Through an iterative coding and refinement process, the interview feedback is summarized into a list of 36 common criticisms. Second, we interview 17 researchers to validate our list and collect their responses, thereby discussing implications for defending and improving the scientific values and rigor of VA systems. We highlight that the presented knowledge is deep, extensive, but also imperfect, provocative, and controversial, and thus recommend reading with an inclusive and critical eye. We hope our work can provide thoughts and foundations for conducting VA research and spark discussions to promote the research field forward more rigorously and vibrantly.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37018729

RESUMEN

Benchmark datasets play an important role in evaluating Natural Language Understanding (NLU) models. However, shortcuts-unwanted biases in the benchmark datasets-can damage the effectiveness of benchmark datasets in revealing models' real capabilities. Since shortcuts vary in coverage, productivity, and semantic meaning, it is challenging for NLU experts to systematically understand and avoid them when creating benchmark datasets. In this paper, we develop a visual analytics system, ShortcutLens, to help NLU experts explore shortcuts in NLU benchmark datasets. The system allows users to conduct multi-level exploration of shortcuts. Specifically, Statistics View helps users grasp the statistics such as coverage and productivity of shortcuts in the benchmark dataset. Template View employs hierarchical and interpretable templates to summarize different types of shortcuts. Instance View allows users to check the corresponding instances covered by the shortcuts. We conduct case studies and expert interviews to evaluate the effectiveness and usability of the system. The results demonstrate that ShortcutLens supports users in gaining a better understanding of benchmark dataset issues through shortcuts, inspiring them to create challenging and pertinent benchmark datasets.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37028006

RESUMEN

Dashboards, which comprise multiple views on a single display, help analyze and communicate multiple perspectives of data simultaneously. However, creating effective and elegant dashboards is challenging since it requires careful and logical arrangement and coordination of multiple visualizations. To solve the problem, we propose a data-driven approach for mining design rules from dashboards and automating dashboard organization. Specifically, we focus on two prominent aspects of the organization: arrangement, which describes the position, size, and layout of each view in the display space; and coordination, which indicates the interaction between pairwise views. We build a new dataset containing 854 dashboards crawled online, and develop feature engineering methods for describing the single views and view-wise relationships in terms of data, encoding, layout, and interactions. Further, we identify design rules among those features and develop a recommender for dashboard design. We demonstrate the usefulness of DMiner through an expert study and a user study. The expert study shows that our extracted design rules are reasonable and conform to the design practice of experts. Moreover, a comparative user study shows that our recommender could help automate dashboard organization and reach human-level performance. In summary, our work offers a promising starting point for design mining visualizations to build recommenders.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37318965

RESUMEN

We propose emordle, a conceptual design that animates wordles (compact word clouds) to deliver their emotional context to audiences. To inform the design, we first reviewed online examples of animated texts and animated wordles, and summarized strategies for injecting emotion into the animations. We introduced a composite approach that extends an existing animation scheme for one word to multiple words in a wordle with two global factors: the randomness of text animation (entropy) and the animation speed (speed). To create an emordle, general users can choose one predefined animated scheme that matches the intended emotion class and fine-tune the emotion intensity with the two parameters. We designed proof-of-concept emordle examples for four basic emotion classes, namely happiness, sadness, anger, and fear. We conducted two controlled crowdsourcing studies to evaluate our approach. The first study confirmed that people generally agreed on the conveyed emotions from well-crafted animations, and the second one demonstrated that our identified factors helped fine-tune the extent of the emotion delivered. We also invited general users to create their own emordles based on our proposed framework. Through this user study, we confirmed the effectiveness of the approach. We concluded with implications for future research opportunities of supporting emotion expression in visualizations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA