RESUMEN
α-Tocopherol transfer protein (α-TTP) is a ~32 kDa protein expressed mainly in hepatocytes. The major function of the protein is to bind specifically to α-tocopherol and, together, the complex transfers from late lysosomes to the cell membrane. A previous study indicated that some factors might be required in the transferring process. However, there is little information available about the potential transferring factors. In addition, there remains much to learn about other physiological processes which α-TTP might participate in. Thus, in this study a human α-TTP eukaryotic expression vector was successfully constructed and expressed in human hepatoma cells (HepG2). The sensitive genes related to α-TTP were then screened by microarray technology. Results showed that expression of the vector in HepG2 cells led to the identification of 323 genes showing differential expression. The differentially expressed transcripts were divided into four main categories, including (1) cell inflammation; (2) cell cycle and cell apoptosis; (3) cell signaling and gene regulation; and (4) cellular movement. A few cellular movement related transcripts were selected and verified by quantitative real-time PCR. Expressions of some were significantly increased in α-TTP-expressed group, which indicated that these factors were likely to play a role in the transferring process.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células Hep G2 , Humanos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg-1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.
RESUMEN
The effect of alfalfa saponins (AS) supplementation on the meat quality especially the color for growing lamb was investigated. Fifty Hu male lambs with body weights (BW, 19.21 ± 0.45 kg) were divided into five groups and supplemented AS with 0, 500, 1,000, 2,000, and 4,000 mg/kg of dietary dry matter intake. After 90 days, all lambs were slaughtered. The longissimus thoracis muscle in lamb displayed significant changes in the content of intramuscular fat, especially n-3 polyunsaturated fatty acids, and drip loss within AS treatment (p < .05) between control and treatments groups. Redness (a*) significantly improved in both 0-day and 7-day storage with the AS supplementation coupled with the percentage of met-myoglobin reduction (p < .05). The redness (a*) change may result from improved met-myoglobin reducing activity, antioxidant enzymes, lactate dehydrogenase, and succinate dehydrogenase (p < .05) by AS supplementation in muscle. These enzymes may help to protect mitochondria function and reduce met-myoglobin, which bring a bright and red meat color.
Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Color , Dieta/veterinaria , Suplementos Dietéticos , Calidad de los Alimentos , Carne , Medicago sativa/química , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Saponinas/administración & dosificación , Ovinos/crecimiento & desarrollo , Ovinos/metabolismo , Tejido Adiposo/metabolismo , Animales , Ácidos Grasos Omega-3/metabolismo , Almacenamiento de Alimentos/métodos , Masculino , Carne/análisis , Saponinas/aislamiento & purificación , Factores de TiempoRESUMEN
Dietary vitamin E supplementation is beneficial to semen quality in different sheep and goat breeds. The aim of this research was to further investigate the effect of vitamin E in sheep on spermatogenesis and its regulatory mechanisms using RNA-seq. Thirty male Hu lambs were randomly divided into three groups. The animals received 0, 200 or 2000 IU/day vitamin E dietary supplementation for 105 days, and its effects were subsequently evaluated. The results indicate vitamin E supplementation increased the number of germ cells in the testes and epididymides. The positive effects were reduced, however, in animals that received 2000 IU/d vitamin E. Using the RNA-seq procedure, there was detection of a number of differentially expressed genes such as NDRG1, FSCN3 and CYP26B1 with these genes being mainly related to the regulation of spermatogenesis. Supplementation with 2000 IU/d vitamin E supplementation resulted in a lesser abundance of skeleton-related transcripts such as TUBB, VIM and different subtypes of collagen, and there was also an effect on the ECM-receptor interaction pathway. These changes appear to be responsible for the lesser beneficial effect of the greater vitamin E concentrations. The results provide a novel insight into the regulation of spermatogenesis by vitamin E at the molecular level, however, for a precise understanding of functions of the affected genes there needs to be further study.