Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Methods ; 20(4): 523-535, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973549

RESUMEN

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas , Transferencia Resonante de Energía de Fluorescencia/métodos , Reproducibilidad de los Resultados , Proteínas/química , Conformación Molecular , Laboratorios
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385321

RESUMEN

There is growing interest in developing biologics due to their high target selectivity. The G protein-coupled homo- and heterodimeric metabotropic glutamate (mGlu) receptors regulate many synapses and are promising targets for the treatment of numerous brain diseases. Although subtype-selective allosteric small molecules have been reported, their effects on the recently discovered heterodimeric receptors are often not known. Here, we describe a nanobody that specifically and fully activates homodimeric human mGlu4 receptors. Molecular modeling and mutagenesis studies revealed that the nanobody acts by stabilizing the closed active state of the glutamate binding domain by interacting with both lobes. In contrast, this nanobody does not activate the heterodimeric mGlu2-4 but acts as a pure positive allosteric modulator. These data further reveal how an antibody can fully activate a class C receptor and bring further evidence that nanobodies represent an alternative way to specifically control mGlu receptor subtypes.


Asunto(s)
Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Anticuerpos de Dominio Único , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Biológicos , Mutación , Unión Proteica , Conformación Proteica , Receptores de Glutamato Metabotrópico/genética
3.
Chembiochem ; 20(5): 659-666, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427570

RESUMEN

Conjugation of fluorescent dyes to proteins-a prerequisite for the study of conformational dynamics by single-molecule (sm) FRET-can lead to substantial changes in a dye's photophysical properties, ultimately biasing the determination of inter-dye distances. In particular, cyanine dyes and their derivatives, the most commonly used dyes in smFRET experiments, exhibit such behavior. To overcome this, we developed a general strategy to equip proteins site-specifically with FRET pairs through chemoselective reactions with two distinct noncanonical amino acids simultaneously incorporated through genetic code expansion in Escherichia coli. Application of this technique to human NADPH-cytochrome P450 reductase (CPR) demonstrated the importance of homogenously labeled samples for accurate determination of FRET efficiencies and unveiled the effect of NADP+ on the ionic-strength-dependent modulation of the conformational equilibrium of CPR. Thanks to its generality and accuracy, the presented methodology establishes a new benchmark for deciphering of complex molecular dynamics in single molecules.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , NADPH-Ferrihemoproteína Reductasa/química , Imagen Individual de Molécula/métodos , Carbocianinas/química , Clonación Molecular , Escherichia coli/genética , Colorantes Fluorescentes/química , Humanos , Lisina/análogos & derivados , Lisina/química , Microscopía Confocal/métodos , Conformación Molecular , Fenilalanina/análogos & derivados , Fenilalanina/química
5.
Anal Biochem ; 451: 4-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24491444

RESUMEN

Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA-synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: ß-glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.


Asunto(s)
Azidas/química , Eritropoyetina/metabolismo , Colorantes Fluorescentes/química , Glucuronidasa/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Sistema Libre de Células , Electroforesis en Gel de Poliacrilamida , Eritropoyetina/química , Eritropoyetina/genética , Glucuronidasa/química , Glucuronidasa/genética , Humanos , Fenilalanina/química , Fenilalanina/metabolismo , Células Sf9/metabolismo , Triticum/metabolismo
6.
Sci Adv ; 9(22): eadf1378, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267369

RESUMEN

Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.


Asunto(s)
Receptores de Glutamato Metabotrópico , Regulación Alostérica , Ligandos , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Glutamatos
7.
Nat Commun ; 12(1): 5426, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521824

RESUMEN

Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states.


Asunto(s)
Ácido Glutámico/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/química , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Aminoácidos/química , Aminoácidos/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Dominio Catalítico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ésteres del Colesterol/química , Ésteres del Colesterol/farmacología , Diosgenina/análogos & derivados , Diosgenina/química , Diosgenina/farmacología , Disacáridos/química , Disacáridos/farmacología , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Glucósidos/química , Glucósidos/farmacología , Glucolípidos/química , Glucolípidos/farmacología , Células HEK293 , Humanos , Indanos/química , Indanos/farmacología , Micelas , Octoxinol/química , Octoxinol/farmacología , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula , Xantenos/química , Xantenos/farmacología
8.
Cell Rep ; 36(9): 109648, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469715

RESUMEN

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Agonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Subunidades de Proteína , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/ultraestructura , Relación Estructura-Actividad
9.
Mol Cell Endocrinol ; 493: 110469, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163201

RESUMEN

Over the last decades, G protein coupled receptors (GPCRs) have experienced a tremendous amount of attention, which has led to a boost of structural and pharmacological insights on this large membrane protein superfamily involved in various essential physiological functions. Recently, evidence has emerged that, rather than being activated by ligands in an on/off manner switching from an inactive to an active state, GPCRs exhibit high structural flexibility in the absence and even in the presence of ligands. So far the physiological as well as pharmacological impact of this structural flexibility remains largely unexplored albeit its potential role in precisely fine-tuning receptor function and regulating the specificity of signal transduction into the cell. By complementing other biophysical approaches, single molecule fluorescence (SMF) offers the advantage of monitoring structural dynamics in biomolecules in real-time, with minimal structural invasiveness and in the context of complex biological environments. In this review a general introduction to GPCR structural dynamics is given followed by a presentation of SMF methods used to explore them. Particular attention is paid to single molecule Förster resonance energy transfer (smFRET), a key method to measure actual distance changes between two probes, and highlight conformational changes occurring at timescales relevant for protein conformational movements. The available literature reporting on GPCR structural dynamics by SMF is discussed with a focus on the newly gained biological insights on receptor activation and signaling, in particular for the ß2 adrenergic and the metabotropic glutamate receptors.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Imagen Individual de Molécula , Bibliotecas de Moléculas Pequeñas/química
10.
Sci Rep ; 6: 30399, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27456041

RESUMEN

Cell-free protein synthesis systems derived from eukaryotic sources often provide comparatively low amounts of several µg per ml of de novo synthesized membrane protein. In order to overcome this, we herein demonstrate the high-yield cell-free synthesis of the human EGFR in a microsome-containing system derived from cultured Sf21 cells. Yields were increased more than 100-fold to more than 285 µg/ml by combination of IRES-mediated protein translation with a continuous exchange cell-free reaction format that allowed for prolonged reaction lifetimes exceeding 24 hours. In addition, an orthogonal cell-free translation system is presented that enabled the site-directed incorporation of p-Azido-L-phenylalanine by amber suppression. Functionality of cell-free synthesized receptor molecules is demonstrated by investigation of autophosphorylation activity in the absence of ligand and interaction with the cell-free synthesized adapter molecule Grb2.


Asunto(s)
Receptores ErbB/biosíntesis , Sitios Internos de Entrada al Ribosoma , Microsomas/metabolismo , Animales , Sistema Libre de Células , Receptores ErbB/genética , Humanos , Mutación , Células Sf9 , Spodoptera
11.
Sci Rep ; 6: 34048, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27670253

RESUMEN

Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells. We provide evidence for embedment of cell-free synthesized receptors into microsomal membranes and asparagine-linked glycosylation. Using the cricket paralysis virus internal ribosome entry site and a repetitive synthesis approach enrichment of receptors inside the microsomal fractions was facilitated thereby providing analytical amounts of functional protein. Receptor tyrosine kinase activation was demonstrated by monitoring receptor phosphorylation. Furthermore, an orthogonal cell-free translation system that provides the site-directed incorporation of p-azido-L-phenylalanine is characterized and applied to investigate receptor dimerization in the absence of a ligand by photo-affinity cross-linking. Finally, incorporated azides are used to generate stable covalently linked receptor dimers by strain-promoted cycloaddition using a novel linker system.

12.
FEBS Lett ; 589(15): 1703-12, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25937125

RESUMEN

Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.


Asunto(s)
Aminoácidos/metabolismo , Biosíntesis de Proteínas , Sistema Libre de Células
13.
J Biotechnol ; 203: 45-53, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25828454

RESUMEN

Due to their high abundance and pharmacological relevance there is a growing demand for the efficient production of functional membrane proteins. In this context, cell-free protein synthesis represents a valuable alternative that allows for the high-throughput synthesis of functional membrane proteins. Here, we demonstrate the potential of our cell-free protein synthesis system, based on lysates from cultured Spodoptera frugiperda 21 cells, to produce pro- and eukaryotic membrane proteins with individual topological characteristics in an automated fashion. Analytical techniques, including confocal laser scanning microscopy, fluorescence detection of eYFP fusion proteins in a microplate reader and in-gel fluorescence of statistically incorporated fluorescent amino acid derivatives were employed. The reproducibility of our automated synthesis approach is underlined by coefficients of variation below 7.2%. Moreover, the functionality of the cell-free synthesized potassium channel KcsA was analyzed electrophysiologically. Finally, we expanded our cell-free membrane protein synthesis system by an orthogonal tRNA/synthetase pair for the site-directed incorporation of p-Azido-l-phenylalanine based on stop codon suppression. Incorporation was optimized by performance of a two-dimensional screening with different Mg(2+) and lysate concentrations. Subsequently, the selective modification of membrane proteins with incorporated p-Azido-l-phenylalanine was exemplified by Staudinger ligation with a phosphine-based fluorescence dye.


Asunto(s)
Acuaporina 1/química , Proteínas Bacterianas/química , Receptores ErbB/química , Factor de Crecimiento Similar a EGF de Unión a Heparina/química , Canales de Potasio/química , Aminoacil-ARNt Sintetasas/química , Animales , Azidas/química , Bacteriorodopsinas/química , Proteínas Luminiscentes/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Plásmidos , Proteínas Recombinantes de Fusión/química , Células Sf9 , Spodoptera
14.
PLoS One ; 9(5): e96635, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24804975

RESUMEN

In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Proteínas/análisis , Animales , Sistema Libre de Células , Células Cultivadas , Insectos
15.
Biosens Bioelectron ; 59: 174-83, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24727603

RESUMEN

The potassium channel KcsA was heterologously expressed in a eukaryotic cell-free system. Both, the expression yields and functional analysis of the protein were reported. Qualitative and quantitative analyses of KcsA expression were performed by using (14)C-labeled leucine as one of the amino acids supplemented in the cell-free reaction mixture. There was a time dependent increase in the protein yield as well as the intensity of the native tetramer band in insect cell derived microsomes. Electrophysiology measurements demonstrated the functional activity of the microsomes harboring KcsA showing single-channel currents with the typical biophysical characteristics of the ion channel. The channel behavior was asymmetric and showed positive rectification with larger currents towards positive voltages. KcsA channel currents were effectively blocked by potassium selective barium (Ba(2+)). This functional demonstration of an ion channel in eukaryotic cell-free system has a large potential for future applications including drug screening, diagnostic applications and functional assessment of complex membrane proteins like GPCRs by coupling them to ion channels in cell-free systems. Furthermore, membrane proteins can be expressed directly from linear DNA templates within 90 min, eliminating the need for additional cloning steps, which makes this cell-free system fast and efficient.


Asunto(s)
Proteínas Bacterianas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Streptomyces lividans/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Microsomas/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Biosíntesis de Proteínas , Multimerización de Proteína , Streptomyces lividans/química , Streptomyces lividans/genética
16.
Adv Biochem Eng Biotechnol ; 137: 67-102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23576054

RESUMEN

: The main goal of cell-free protein synthesis is to produce correctly folded and functional proteins in reasonable amounts for further downstream applications. Especially for eukaryotic proteins, functionality is often directly linked to the presence of posttranslational modifications. Thus, it is of highest interest to develop novel cell-free expression systems that enable the synthesis of posttranslationally modified proteins. Here we present recent advances for the synthesis of glycoproteins, proteins containing disulfide bridges, membrane proteins, and fluorescently labeled proteins. The basis for the expression of these difficult-to-express target proteins is a translationally active cell extract which can be prepared from eukaryotic cell lines such as Spodoptera frugiperda 21 (Sf21) and Chinese hamster ovary (CHO) cells. Due to a very mild lysate preparation procedure, microsomal vesicles derived from the endoplasmic reticulum (ER) can be maintained in the eukaryotic lysate. These vesicles are translocationally active and serve as functional modules facilitating protein translocation and enrichment as well as posttranslational modification of de novo synthesized proteins. In particular, for the synthesis of membrane proteins microsomal vesicles are the essential prerequisite for the insertion of the desired protein into a biologically active membrane scaffold providing a natural environment. We anticipate that the use of such translationally active eukaryotic cell lysates containing translocationally active vesicles may solve a large number of problems still persistent when expressing eukaryotic proteins in vitro.


Asunto(s)
Células CHO , Sistema Libre de Células , Animales , Cricetulus , Células Eucariotas , Glicoproteínas/biosíntesis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA