Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 167(3): 433-43, 2004 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-15520229

RESUMEN

Saccharomyces cerevisiae must reach a carbon source-modulated critical cell size, protein content per cell at the onset of DNA replication (Ps), in order to enter S phase. Cells grown in glucose are larger than cells grown in ethanol. Here, we show that an increased level of the cyclin-dependent inhibitor Far1 increases cell size, whereas far1 Delta cells start bud emergence and DNA replication at a smaller size than wild type. Cln3 Delta, far1 Delta, and strains overexpressing Far1 do not delay budding during an ethanol glucose shift-up as wild type does. Together, these findings indicate that Cln3 has to overcome Far1 to trigger Cln-Cdc28 activation, which then turns on SBF- and MBF-dependent transcription. We show that a second threshold is required together with the Cln3/Far1 threshold for carbon source modulation of Ps. A new molecular network accounting for the setting of Ps is proposed.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclinas/fisiología , Mitosis , Proteínas Represoras/fisiología , Fase S , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomycetales/citología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Tamaño de la Célula , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , Replicación del ADN , Etanol/metabolismo , Glucosa/metabolismo , Saccharomycetales/química , Saccharomycetales/metabolismo , Transcripción Genética
2.
Ital J Biochem ; 52(1): 55-7, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12833640

RESUMEN

The regulation of cell cycle progression via the attainment of a critical cell size is a conserved feature from simpler unicellular organisms to mammalian cells that is obtaining much attention recently. Genome wide analysis of Saccharomyces cerevisiae deletion strains, genetic epistasis, DNA microarray analysis have recently revealed an increasingly complex network of cell size modulation mechanisms. A systems biology-based approach, that is needed to structure the underlying complexity of cell cycle regulatory mechanisms, is described.


Asunto(s)
Saccharomycetales/fisiología , Ciclo Celular , Eliminación de Gen , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomycetales/genética , Saccharomycetales/metabolismo
3.
Biotechnol Adv ; 30(1): 185-201, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21964263

RESUMEN

The FAR1 gene encodes an 830 residue bifunctional protein, whose major function is inhibition of cyclin-dependent kinase complexes involved in the G1/S transition. FAR1 transcription is maximal between mitosis and early G1 phase. Enhanced FAR1 transcription is necessary but not sufficient for the pheromone-induced G1 arrest, since FAR1 overexpression itself does not trigger cell cycle arrest. Besides its well established role in the response to pheromone, recent evidences suggest that Far1 may also regulate the mitotic cell cycle progression: in particular, it has been proposed that Far1, together with the G1 cyclin Cln3, may be part of a cell sizer mechanism that controls the entry into S phase. Far1 is an unstable protein throughout the cell cycle except during G1 phase. Far1 levels peak in newborn cells as a consequence of a burst of synthetic activity at the end of the previous cycle, and the amounts per cell remain roughly constant during the G1 phase. Phosphorylation (at serine 87) by Cdk1-Cln complexes primes Far1 for ubiquitin-mediated proteolysis. By coupling a genome-wide transcriptional analysis of FAR1-overexpressing and far1Δ cells grown in ethanol- or glucose-supplemented minimal media with a range of phenotypic analysis, we show that FAR1 overexpression not only coordinately increases RNA and protein accumulation, but induces strong transcriptional remodeling, metabolism being the most affected cellular property, suggesting that the Far1/Cln3 sizer regulates cell growth either directly or indirectly by affecting metabolism and pathways known to modulate ribosome biogenesis. A crucial role in mediating the effect of Far1 overexpression is played by the Sfp1 protein, a key transcriptional regulator of ribosome biogenesis, whose presence is mandatory to allow a coordinated increase in both RNA and protein levels in ethanol-grown cells.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , ARN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Tamaño de la Célula , Análisis por Conglomerados , Biología Computacional , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/genética , Etanol/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Glucosa/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Transcripción Genética , Regulación hacia Arriba
4.
J Biol Chem ; 283(8): 4730-43, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18156177

RESUMEN

Yeast cells undergoing a nutritional shift-up from a poor to a rich carbon source take several hours to adapt to the novel, richer carbon source. The budding index is a physiologically relevant "global" parameter that reflects the complex links between cell growth and division that are both coordinately and deeply affected by nutritional conditions. We used changes in budding index as a guide to choose appropriate, relevant time points during an ethanol to glucose nutritional shift-up for preparation of samples for the analysis of proteome by two-dimensional electrophoresis/mass spectrometry. About 600 spots were detected. 90 spots, mostly comprising proteins involved in intermediary metabolism, protein synthesis, and response to stress, showed differential expression after glucose addition. Among modulated proteins we identified a protein of previously unknown function, Gvp36, showing a transitory increase corresponding to the drop of the fraction of budded cells. A gvp36Delta strain shares several phenotypes (including general growth defects, heat shock, and high salt sensitivity, defects in polarization of the actin cytoskeleton, in endocytosis and in vacuolar biogenesis, defects in entering stationary phase upon nutrient starvation) with secretory pathway mutants and with mutants in genes encoding the two previously known yeast BAR proteins (RSV161 and RSV167). We thus propose that Gvp36 represents a novel yeast BAR protein involved in vesicular traffic and in nutritional adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Ácido Aspártico Endopeptidasas/metabolismo , Glucosa/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Vacuolas/metabolismo , Actinas/genética , Actinas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Transporte Biológico/fisiología , Carbono/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Endocitosis/fisiología , Glucosa/genética , Aparato de Golgi/genética , Proteoma , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Vacuolas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA