Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Physiol ; 173(1): 434-455, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27852950

RESUMEN

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Complejo I de Transporte de Electrón/genética , Fotoperiodo , Antioxidantes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Nitrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
Plant Cell Environ ; 38(2): 266-79, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24329757

RESUMEN

Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/farmacología , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Núcleo Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Etilenos/metabolismo , Genes de Plantas , Disulfuro de Glutatión/metabolismo , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Ftalimidas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Tiorredoxinas/metabolismo
3.
Biochim Biophys Acta ; 1830(5): 3304-16, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23069719

RESUMEN

Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as "redox sensor" at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione.


Asunto(s)
Núcleo Celular/metabolismo , Glutatión/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclo Celular/fisiología , Muerte Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Núcleo Celular/genética , Replicación del ADN , Glutatión/genética , Humanos , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Exp Bot ; 65(5): 1403-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24470466

RESUMEN

Glutathione peroxidases (GPXs) fulfil important functions in oxidative signalling and protect against the adverse effects of excessive oxidation. However, there has been no systematic characterization of the functions of the different GPX isoforms in plants. The roles of the different members of the Arabidopsis thaliana GPX gene (AtGPX) family were therefore investigated using gpx1, gpx2, gpx3, gpx4, gpx6, gpx7, and gpx8 T-DNA insertion mutant lines. The shoot phenotypes were largely similar in all genotypes, with small differences from the wild type observed only in the gpx2, gpx3, gpx7, and gpx8 mutants. In contrast, all the mutants showed altered root phenotypes compared with the wild type. The gpx1, gpx4, gpx6, gpx7, and gpx8 mutants had a significantly greater lateral root density (LRD) than the wild type. Conversely, the gpx2 and gpx3 mutants had significantly lower LRD values than the wild type. Auxin increased the LRD in all genotypes, but the effect of auxin was significantly greater in the gpx1, gpx4, and gpx7 mutants than in the wild type. The application of auxin increased GPX4 and GPX7 transcripts, but not GPX1 mRNAs in the roots of wild-type plants. The synthetic strigolactone GR24 and abscisic acid (ABA) decreased LRD to a similar extent in all genotypes, except gpx6, which showed increased sensitivity to ABA. These data not only demonstrate the importance of redox controls mediated by AtGPXs in the control of root architecture but they also show that the plastid-localized GPX1 and GPX7 isoforms are required for the hormone-mediated control of lateral root development.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Glutatión Peroxidasa/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Arabidopsis/genética , Glutatión Peroxidasa/metabolismo , Oxidación-Reducción , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa
5.
Plant J ; 69(4): 613-27, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21985584

RESUMEN

This work investigated the contribution of AtRbohD and AtRbohF to regulating defence-associated metabolism during three types of interaction: (i) incompatible and (ii) compatible interaction with Pseudomonas syringae; and (iii) intracellular oxidative stress in the catalase-deficient cat2 background. In all three cases, loss of function of either gene modulated the response of defence compounds. AtRbohF gene function was necessary for rapid and full induction of salicylic acid (SA) during compatible and incompatible interactions, and for resistance to virulent bacteria. Both artrboh mutations modulated the effects of intracellular ROS in the cat2 background, although the predominant effect was mediated by atrbohF. Loss of this gene function increased lesion formation in cat2 but uncoupled this effect from cat2-triggered induction of SA and camalexin, accumulation of glutathione and disease resistance, all of which were much lower in cat2 artbohF than in cat2. A detailed comparison of GC-TOF-MS profiles produced by the three interactions revealed considerable overlap between cat2 effects and those produced by bacterial infection in the wild-type background. Analysis of the impact of the two atrboh mutations on these profiles provided further evidence that AtRbohF interacts closely with intracellular oxidative stress to tune dynamic metabolic responses during infection. Thus, AtRbohF appears to be a key player not only in HR-related cell death but also in regulating metabolomic responses and resistance. Based on the results obtained during the three types of interaction, a model is proposed of how NADPH oxidases and intracellular ROS interact to determine the outcome of pathogen defence responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Catalasa/metabolismo , Muerte Celular , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión/metabolismo , Indoles/metabolismo , Metabolómica , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Escopoletina/metabolismo , Transducción de Señal/fisiología , Tiazoles/metabolismo
6.
Plant Cell Environ ; 35(2): 374-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21631535

RESUMEN

Growth day length, CO(2) levels and H(2)O(2) all impact plant function, but interactions between them remain unclear. Using a whole-genome transcriptomics approach, we identified gene expression patterns responding to these three factors in Arabidopsis Col-0 and the conditional catalase-deficient mutant, cat2. Plants grown for 5 weeks at high CO(2) in short days (hCO(2)) were transferred to air in short days (SD air) or long days (LD air), and microarray data produced were subjected to three independent studies. The first two analysed genotype-independent responses. They identified 1549 genes differentially expressed after transfer from hCO(2) to SD air. Almost half of these, including genes modulated by sugars or associated with redox, stress or abscisic acid (ABA) functions, as well as light signalling and clock genes, were no longer significant after transfer to air in LD. In a third study, day length-dependent H(2)O(2)-responsive genes were identified by comparing the two genotypes. Two clearly independent responses were observed in cat2 transferred to air in SD and LD. Most H(2)O(2) -responsive genes were up-regulated more strongly in SD air. Overall, the analysis shows that both CO(2) and H(2)O(2) interact with day length and photoreceptor pathways, indicating close networking between carbon status, light and redox state in environmental responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Catalasa/genética , Catalasa/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Luz , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo , Fotoperiodo , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transcriptoma
7.
Plant Cell Environ ; 35(2): 454-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21777251

RESUMEN

Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Plantas/metabolismo , Transducción de Señal/fisiología , Transporte Biológico , Respiración de la Célula , Luz , Oxidación-Reducción , Estrés Oxidativo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Azufre/metabolismo
8.
J Exp Bot ; 63(4): 1637-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22371324

RESUMEN

The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/fisiología , Transporte de Electrón , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo
9.
Plant Physiol ; 153(4): 1692-705, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20543092

RESUMEN

While it is well established that reactive oxygen species can induce cell death, intracellularly generated oxidative stress does not induce lesions in the Arabidopsis (Arabidopsis thaliana) photorespiratory mutant cat2 when plants are grown in short days (SD). One interpretation of this observation is that a function necessary to couple peroxisomal hydrogen peroxide (H(2)O(2))-triggered oxidative stress to cell death is only operative in long days (LD). Like lesion formation, pathogenesis-related genes and camalexin were only induced in cat2 in LD, despite less severe intracellular redox perturbation compared with SD. Lesion formation triggered by peroxisomal H(2)O(2) was modified by introducing secondary mutations into the cat2 background and was completely absent in cat2 sid2 double mutants, in which ISOCHORISMATE SYNTHASE1 (ICS1) activity is defective. In addition to H(2)O(2)-induced salicylic acid (SA) accumulation, the sid2 mutation in ICS1 abolished a range of LD-dependent pathogen responses in cat2, while supplementation of cat2 with SA in SD activated these responses. Nontargeted transcript and metabolite profiling identified clusters of genes and small molecules associated with the daylength-dependent ICS1-mediated relay of H(2)O(2) signaling. The effect of oxidative stress in cat2 on resistance to biotic challenge was dependent on both growth daylength and ICS1. We conclude that (1) lesions induced by intracellular oxidative stress originating in the peroxisomes can be genetically reverted; (2) the isochorismate pathway of SA synthesis couples intracellular oxidative stress to cell death and associated disease resistance responses; and (3) camalexin accumulation was strictly dependent on the simultaneous presence of both H(2)O(2) and SA signals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Peróxido de Hidrógeno/metabolismo , Transferasas Intramoleculares/metabolismo , Peroxisomas/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Indoles/metabolismo , Transferasas Intramoleculares/genética , Metaboloma , Mutación , Estrés Oxidativo , Fotoperiodo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Tiazoles/metabolismo
10.
Plant Physiol ; 153(3): 1144-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20488891

RESUMEN

Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.


Asunto(s)
Arabidopsis/enzimología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxilipinas/farmacología , Hojas de la Planta/enzimología , Ácido Salicílico/farmacología , Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Ácido Ascórbico/metabolismo , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Glutatión/metabolismo , Glutatión Reductasa/genética , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/enzimología , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Plant Cell Environ ; 34(1): 21-32, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20807372

RESUMEN

One biochemical response to increased H2O2 availability is the accumulation of glutathione disulphide (GSSG), the disulphide form of the key redox buffer glutathione. It remains unclear how this potentially important oxidative stress response impacts on the different sub-cellular glutathione pools. We addressed this question by using two independent in situ glutathione labelling techniques in Arabidopsis wild type (Col-0) and the GSSG-accumulating cat2 mutant. A comparison of in situ labelling with monochlorobimane (MCB) and in vitro labelling with monobromobimane (MBB) revealed that, whereas in situ labelling of Col-0 leaf glutathione was complete within 2 h incubation, about 50% of leaf glutathione remained inaccessible to MCB in cat2. High-performance liquid chromatography (HPLC) and enzymatic assays showed that this correlated tightly with the glutathione redox state, pointing to significant in vivo pools of GSSG in cat2 that were unavailable for MCB labelling. Immunogold labelling of leaf sections to estimate sub-cellular glutathione distribution showed that the accumulated GSSG in cat2 was associated with only a minor increase in cytosolic glutathione but with a 3- and 10-fold increase in plastid and vacuolar pools, respectively. The data are used to estimate compartment-specific glutathione concentrations under optimal and oxidative stress conditions, and the implications for redox homeostasis and signalling are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Transporte Biológico , Compuestos Bicíclicos con Puentes , Compartimento Celular , Cromatografía Líquida de Alta Presión , Colorantes Fluorescentes , Disulfuro de Glutatión/metabolismo , Inmunohistoquímica , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Hojas de la Planta/ultraestructura , Pirazoles , Eliminación de Secuencia , Transducción de Señal
12.
J Exp Bot ; 61(15): 4197-220, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20876333

RESUMEN

Hydrogen peroxide (H(2)O(2)) is an important signal molecule involved in plant development and environmental responses. Changes in H(2)O(2) availability can result from increased production or decreased metabolism. While plants contain several types of H(2)O(2)-metabolizing proteins, catalases are highly active enzymes that do not require cellular reductants as they primarily catalyse a dismutase reaction. This review provides an update on plant catalase genes, function, and subcellular localization, with a focus on recent information generated from studies on Arabidopsis. Original data are presented on Arabidopsis catalase single and double mutants, and the use of some of these lines as model systems to investigate the outcome of increases in intracellular H(2)O(2) are discussed. Particular attention is paid to interactions with cell thiol-disulphide status; the use of catalase-deficient plants to probe the apparent redundancy of reductive H(2)O(2)-metabolizing pathways; the importance of irradiance and growth daylength in determining the outcomes of catalase deficiency; and the induction of pathogenesis-related responses in catalase-deficient lines. Within the context of strategies aimed at understanding and engineering plant stress responses, the review also considers whether changes in catalase activities in wild-type plants are likely to be a significant part of plant responses to changes in environmental conditions or biotic challenge.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Catalasa/metabolismo , Modelos Biológicos , Mutación/genética , Estrés Fisiológico , Secuencia de Aminoácidos , Catalasa/química , Catalasa/clasificación , Catalasa/genética , Datos de Secuencia Molecular , Oxidación-Reducción
15.
J Exp Bot ; 59(2): 135-46, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18332224

RESUMEN

Leaf metabolism produces H2O2 at high rates, but current concepts suggest that the potent signalling effects of this oxidant require that concentrations be controlled by a battery of antioxidative enzymes. The extent to which H2O2 is allowed to accumulate remains unclear. There is little consensus on leaf H2O2 values in the literature and measured concentrations in unstressed conditions range from 50-5000 nmol g(-1) fresh weight, a difference that probably reflects technical inaccuracies as much as biological variability. This article uses new experimental and literature data to examine some of the difficulties in accurately measuring H2O2 in leaf extracts. Potential problems relate to sensitivity, interference from other redox-active compounds, and H2O2 stability during sample preparation. Particular attention is drawn to the influence of tissue mass/extraction volume in the quantitative estimation of H2O2 contents, and the possibility that this factor could contribute to the variability of literature data.


Asunto(s)
Peróxido de Hidrógeno/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Adaptación Fisiológica , Ácido Ascórbico/química , Cloroplastos/metabolismo , Compuestos Ferrosos/química , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Oxígeno/química , Fenoles , Hojas de la Planta/metabolismo , Transducción de Señal/fisiología , Sulfóxidos , Xilenos/química
16.
Free Radic Biol Med ; 75 Suppl 1: S3, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26461332

RESUMEN

The tripeptide thiol glutathione (GSH) is present in the nucleus of plant and animal cells. However, the functions of GSH in the nucleus remain poorly characterised. GSH appears to become sequestered in the nucleus at the early stages of the cell cycle. As part of our search for proteins that may be involved in GSH transport into the nucleus, we studied the functions of the nucleoporin called Alacrima Achalasia aDrenal Insufficiency Neurologic disorder (ALADIN). ALADIN is encoded by the Achalasia-Addisonianism-Alacrimia (AAAS) gene in mammalian cells. Defects in ALADIN promote adrenal disorders and lead to the triple A syndrome in humans. The ALADIN protein localizes to the nuclear envelope in Arabidopsis thaliana and interacts with other components of the nuclear pore complex (NPC). We characterised the functions of the ALADIN protein in an Arabidopsis thaliana T-DNA insertion knockout mutant, which shows slow growth compared to the wild type.

17.
Antioxid Redox Signal ; 18(16): 2106-21, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23148658

RESUMEN

AIMS: Through its interaction with H(2)O(2), glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H(2)O(2). RESULTS: Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H(2)O(2)-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H(2)O(2)-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H(2)O(2)-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. INNOVATION: A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H(2)O(2) signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. CONCLUSION: In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H(2)O(2) to activate SA signaling, a key defense response in plants.


Asunto(s)
Arabidopsis/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mutación , Ácido Salicílico/metabolismo , Transducción de Señal , Arabidopsis/genética , Estrés Oxidativo
18.
Philos Trans R Soc Lond B Biol Sci ; 367(1608): 3475-85, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23148274

RESUMEN

Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fotosíntesis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Respiración de la Célula , Cloroplastos/genética , Cloroplastos/metabolismo , Transporte de Electrón , Perfilación de la Expresión Génica/métodos , Glutatión/genética , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Peroxisomas/genética , Peroxisomas/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Transcriptoma
19.
Arabidopsis Book ; 9: e0142, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22303267

RESUMEN

Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.

20.
Annu Rev Plant Biol ; 60: 455-84, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575589

RESUMEN

Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.


Asunto(s)
Metabolismo Energético , Luz , Mutación , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA