Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 23(1): 169-188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422673

RESUMEN

Lithium metal batteries have recently gained tremendous attention owing to their high energy capacity compared to other rechargeable batteries. Nevertheless, lithium (Li) dendritic growth causes low Coulombic efficiency, thermal runaway, and safety issues, all of which hinder the practical application of Li metal as an anodic material. In this review, the failure mechanisms of Li metal anode are described according to its infinite volume changes, unstable solid electrolyte interphase, and Li dendritic growth. The fundamental models that describe the Li deposition and dendritic growth, such as the thermodynamic, electrodeposition kinetics, and internal stress models are summarized. From these considerations, porous carbon-based frameworks have emerged as a promising strategy to resolve these issues. Thus, the main principles of utilizing these materials as a Li metal host are discussed. Finally, we also focus on the recent progress on utilizing one-, two-, and three-dimensional carbon-based frameworks and their composites to highlight the future outlook of these materials.

2.
Sci Technol Adv Mater ; 22(1): 100-112, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762890

RESUMEN

Many researchers working on the development of Dye-sensitized solar cells (DSCs) continue to focus on the synthesis of photoanode materials with high surface area, along with high light scattering ability to enhance light harvesting efficiency (LHE). On the other hand, dye packing density, which can also affect the LHE significantly, is often overlooked. Solvothermally synthesized anatase TiO2 nanoparticles (SANP) were obtained by a new and simple approach using a mixed solvent, ethanol and acetic acid. SANP were applied as a photoanodes material in DSCs using a metal-free organic dye (D149) or organometallic dye (N719) dyes. The dye loading (packing density) was examined in term of the isoelectric point (IEP) and the contribution of this, in addition to light scattering effects were shown to control the devices photovoltaic efficiency of the devices; specifically when compared with ones employing commercially available TiO2 nanoparticles (either transparent or a bilayer structure with a transparent layer and a scattering one). SANP photoanodes sensitized with D149 dye were found to be optimised at 10 µm, yielding photovoltaic conversion efficiencies of 6.9%, superior to for transparent or transparent + scattering films from the commercial source (5.6% and 5.9%, respectively). Further to this, an efficiency of 7.7% PCE was achieved using a SANP photoanode sensitized with N719 dye, with 7.2% seen for the transparent photoanode and 7.9% with a scattering layer. The high efficiencies of devices based on of SANP photoanode are attributed to the high dye loading capability in addition to good light scattering. A further point of interest is that even with the increased reactivity of the surface towards dye adsorption, we did not observe any significant increase in recombination with the redox mediator, presumably due to this increased dye loading providing better shielding.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446456

RESUMEN

Hierarchical aggregates of anatase TiO2 nanoribbons/nanosheets (TiO2-NR) and anatase TiO2 nanoparticles (TiO2-NP) were produced through a one-step solvothermal reaction using acetic acid or ethanol and titanium isopropoxide as solvothermal reaction systems. The crystalline structure, crystalline phase, and morphologies of synthesized materials were characterized using several techniques. According to our findings, both TiO2-NR and TiO2-NP were found to have polycrystalline structures, with pure anatase phases. TiO2-NR has a three-dimensional hierarchical structure made up of aggregates of TiO2 nanoribbons/nanosheets, while TiO2-NP has a nanoparticulate structure. The photocatalytic and photocurrent activities for TiO2-NR and TiO2-NP were investigated and compared with the widely used commercial TiO2 (P25), which consists of anatase/rutile TiO2 nanoparticles, as a reference material. Our findings showed that TiO2-NR has higher photocatalytic and photocurrent performance than TiO2-NP, which are both, in turn, higher than those of P25. Our developed solvothermal method was shown to produce a pure anatase TiO2 phase for both synthesized structures, without using any surfactants or any other assisted templates. This developed solvothermal approach, and its anatase TiO2 nanostructure output, has promising potential for a wide range of energy harvesting applications, such as water pollution treatment and solar cells.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889688

RESUMEN

The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.

5.
Chem Asian J ; 16(24): 4010-4017, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34709715

RESUMEN

Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA