Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cells ; 9(6)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503129

RESUMEN

Fenestrae are transcellular plasma membrane pores that mediate blood-tissue exchange in specialised vascular endothelia. The composition and biogenesis of the fenestra remain enigmatic. We isolated and characterised the protein composition of large patches of fenestrated plasma membrane, termed sieve plates. Loss-of-function experiments demonstrated that two components of the sieve plate, moesin and annexin II, were positive and negative regulators of fenestra formation, respectively. Biochemical analyses showed that moesin is involved in the formation of an actin-fodrin submembrane cytoskeleton that was essential for fenestra formation. The link between the fodrin cytoskeleton and the plasma membrane involved the fenestral pore protein PV-1 and Na,K-ATPase, which is a key regulator of signalling during fenestra formation both in vitro and in vivo. These findings provide a conceptual framework for fenestra biogenesis, linking the dynamic changes in plasma membrane remodelling to the formation of a submembrane cytoskeletal signalling complex.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Proteínas de Microfilamentos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Anexina A2/metabolismo , Línea Celular , Membrana Celular/ultraestructura , Citoesqueleto/ultraestructura , Células Endoteliales/ultraestructura , Masculino , Ratones , Ouabaína/farmacología , Ratas Sprague-Dawley
2.
Sci Rep ; 6: 35969, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786289

RESUMEN

Reticulons (RTNs) are a large family of membrane associated proteins with various functions. NOGO-A/RTN4A has a well-known function in limiting neurite outgrowth and restricting the plasticity of the mammalian central nervous system. On the other hand, Reticulon 4 proteins were shown to be involved in forming and maintaining endoplasmic reticulum (ER) tubules. Using comparative transcriptome analysis and qPCR, we show here that NOGO-B/RTN4B and NOGO-A/RTN4A are simultaneously expressed in cultured epithelial, fibroblast and neuronal cells. Electron tomography combined with immunolabelling reveal that both isoforms localize preferably to curved membranes on ER tubules and sheet edges. Morphological analysis of cells with manipulated levels of NOGO-B/RTN4B revealed that it is required for maintenance of normal ER shape; over-expression changes the sheet/tubule balance strongly towards tubules and causes the deformation of the cell shape while depletion of the protein induces formation of large peripheral ER sheets.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Nogo/genética , Animales , Línea Celular , Forma de la Célula , Células Cultivadas , Retículo Endoplásmico/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Perfilación de la Expresión Génica , Humanos , Ratones , Microscopía Inmunoelectrónica , Células 3T3 NIH , Neuronas/metabolismo , Neuronas/ultraestructura , Proteínas Nogo/antagonistas & inhibidores , Proteínas Nogo/metabolismo , Isoformas de Proteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Mol Biol Cell ; 25(7): 1111-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24523293

RESUMEN

The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Retículo Endoplásmico/metabolismo , Miosina Tipo I/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Microtúbulos/metabolismo , Miosina Tipo I/química , Fenotipo , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA