RESUMEN
The perception of noxious environmental stimuli by nociceptive sensory neurons is an essential mechanism for the prevention of tissue damage. Etv4 is a transcriptional factor expressed in most nociceptors in dorsal root ganglia (DRG) during the embryonic development. However, its physiological role remains unclear. Here, we show that Etv4 ablation results in defects in the development of the peripheral peptidergic projections in vivo, and in deficits in axonal elongation and growth cone morphology in cultured sensory neurons in response to NGF. From a mechanistic point of view, our findings reveal that NGF regulates Etv4-dependent gene expression of molecules involved in extracellular matrix (ECM) remodeling. Etv4-null mice were less sensitive to noxious heat stimuli and chemical pain, and this behavioral phenotype correlates with a significant reduction in the expression of the pain-transducing ion channel TRPV1 in mutant mice. Together, our data demonstrate that Etv4 is required for the correct innervation and function of peptidergic sensory neurons, regulating a transcriptional program that involves molecules associated with axonal growth and pain transduction.
Asunto(s)
Factor de Crecimiento Nervioso , Nocicepción , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Ganglios Espinales/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Nocicepción/fisiología , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismoRESUMEN
BACKGROUND: ICA512 (or IA-2/PTPRN) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Previous studies implied its involvement in generation, cargo storage, traffic, exocytosis and recycling of insulin secretory granules, as well as in ß-cell proliferation. While several ICA512 domains have been characterized, the function and structure of a large portion of its N-terminal extracellular (or lumenal) region are unknown. Here, we report a biophysical, biochemical, and functional characterization of ICA512-RESP18HD, a domain comprising residues 35 to 131 and homologous to regulated endocrine-specific protein 18 (RESP18). METHODS: Pure recombinant ICA512-RESP18HD was characterized by CD and fluorescence. Its binding to insulin and proinsulin was characterized by ELISA, surface plasmon resonance, and fluorescence anisotropy. Thiol reactivity was measured kinetically. Targeting of ΔRESP18HD ICA512-GFP to the membrane of insulinoma cells was monitored by immunofluorescence. RESULTS: ICA512-RESP18HD possesses a strong tendency to aggregate and polymerize via intermolecular disulfide formation, particularly at pH>4.5. Its cysteine residues are highly susceptible to oxidation forming an intramolecular disulfide between cysteine 53 and 62 and intermolecular disulfides via cysteine 40 and cysteine 47. The regulated sorting of ICA512 to secretory granules in INS-1 cells was impaired by deletion of RESP18HD. ICA512-RESP18HD binds with high-affinity to insulin and proinsulin. CONCLUSIONS: RESP18HD is required for efficient sorting of ICA512 to secretory granules. GENERAL SIGNIFICANCE: RESP18HD is a key determinant for ICA512 granule targeting.
Asunto(s)
Insulina/metabolismo , Proteínas del Tejido Nervioso/química , Estructura Terciaria de Proteína/genética , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/química , Secuencia de Aminoácidos/genética , Biofisica , Proliferación Celular/genética , Humanos , Insulina/química , Islotes Pancreáticos/química , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Neuroendocrinas/química , Células Neuroendocrinas/metabolismo , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Secretoras/química , Vesículas Secretoras/metabolismoRESUMEN
The COVID-19 pandemic has particularly affected older adults residing in nursing homes, resulting in high rates of hospitalisation and death. Here, we evaluated the longitudinal humoral response and neutralising capacity in plasma samples of volunteers vaccinated with different platforms (Sputnik V, BBIBP-CorV, and AZD1222). A cohort of 851 participants, mean age 83 (60-103 years), from the province of Buenos Aires, Argentina were included. Sequential plasma samples were taken at different time points after vaccination. After completing the vaccination schedule, infection-naïve volunteers who received either Sputnik V or AZD1222 exhibited significantly higher specific anti-Spike IgG titers than those who received BBIBP-CorV. Strong correlation between anti-Spike IgG titers and neutralising activity levels was evidenced at all times studied (rho=0.7 a 0.9). Previous exposure to SARS-CoV-2 and age <80 years were both associated with higher specific antibody levels. No differences in neutralising capacity were observed for the infection-naïve participants in either gender or age group. Similar to anti-Spike IgG titers, neutralising capacity decreased 3 to 9-fold at 6 months after initial vaccination for all platforms. Neutralising capacity against Omicron was between 10-58 fold lower compared to ancestral B.1 for all vaccine platforms at 21 days post dose 2 and 180 days post dose 1. This work provides evidence about the humoral response and neutralising capacity elicited by vaccination of a vulnerable elderly population. This data could be useful for pandemic management in defining public health policies, highlighting the need to apply reinforcements after a complete vaccination schedule.
Asunto(s)
COVID-19 , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , Argentina/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Humanos , Inmunoglobulina G , Pandemias , SARS-CoV-2 , VacunaciónRESUMEN
Recent studies have shown a temporal increase in the neutralizing antibody potency and breadth to SARS-CoV-2 variants in coronavirus disease 2019 (COVID-19) convalescent individuals. Here, we examined longitudinal antibody responses and viral neutralizing capacity to the B.1 lineage virus (Wuhan related), to variants of concern (VOC; Alpha, Beta, Gamma, and Delta), and to a local variant of interest (VOI; Lambda) in volunteers receiving the Sputnik V vaccine in Argentina. Longitudinal serum samples (N = 536) collected from 118 volunteers obtained between January and October 2021 were used. The analysis indicates that while anti-spike IgG levels significantly wane over time, the neutralizing capacity for the Wuhan-related lineages of SARS-CoV-2 and VOC is maintained within 6 months of vaccination. In addition, an improved antibody cross-neutralizing ability for circulating variants of concern (Beta and Gamma) was observed over time postvaccination. The viral variants that displayed higher escape to neutralizing antibodies with respect to the original virus (Beta and Gamma variants) were the ones showing the largest increase in susceptibility to neutralization over time after vaccination. Our observations indicate that serum neutralizing antibodies are maintained for at least 6 months and show a reduction of VOC escape to neutralizing antibodies over time after vaccination. IMPORTANCE Vaccines have been produced in record time for SARS-CoV-2, offering the possibility of halting the global pandemic. However, inequalities in vaccine accessibility in different regions of the world create a need to increase international cooperation. Sputnik V is a recombinant adenovirus-based vaccine that has been widely used in Argentina and other developing countries, but limited information is available about its elicited immune responses. Here, we examined longitudinal antibody levels and viral neutralizing capacity elicited by Sputnik V vaccination. Using a cohort of 118 volunteers, we found that while anti-spike antibodies wane over time, the neutralizing capacity to viral variants of concern and local variants of interest is maintained within 4 months of vaccination. In addition, we observed an increased cross-neutralization activity over time for the Beta and Gamma variants. This study provides valuable information about the immune response generated by a vaccine platform used in many parts of the world.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Estudios Longitudinales , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéuticoRESUMEN
Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, the limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of the vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus-neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying administration of the second dose to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Argentina/epidemiología , COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Personal de Salud , Humanos , Pandemias , SARS-CoV-2/patogenicidad , Seroconversión , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas , Células VeroRESUMEN
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.