Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4253, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474523

RESUMEN

Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ß2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.


Asunto(s)
Melanoma , Linfocitos T , Humanos , Ratones , Animales , Linfocitos T/patología , Antígeno-1 Asociado a Función de Linfocito , Células Endoteliales/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/patología , Inmunoterapia , Microambiente Tumoral
2.
Hum Gene Ther ; 14(4): 375-83, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12659678

RESUMEN

Several reports have established the concept of nitric oxide synthase (NOS) gene transfer for inhibiting smooth muscle cell (SMC) proliferation after vascular injury. To minimize potential risks associated with viral gene transfer, we developed a liposome-based gene transfer approach employing inducible NOS (iNOS) overexpression for inhibition of stent-induced neointimal lesion formation. Therapeutic lipoplexes were transferred to femoral or coronary arteries of Goettingen minipigs, using the Infiltrator local drug delivery device. Efficiency of local iNOS lipoplex transfer was analyzed by iNOS-specific immunohistochemistry. NO-mediated inhibition of stent-induced neointimal lesion formation was analyzed by intravascular ultrasound (IVUS) and computerized morphometry. Gene transfer efficiency increased dose dependently to a maximum of 44.3 +/- 4.2% iNOS-positive vessel area (dose, 2 microg of iNOS lipoplex). Proliferating cell nuclear antigen (PCNA) expression of medial SMCs (immunohistochemistry) was inhibited significantly by transfer of 2 microg of iNOS lipoplexes (111 +/- 27 cells [iNOS] versus 481 +/- 67 cells [control; PCNA-positive medial cells]). IVUS analysis demonstrated that local transfer of iNOS lipoplexes resulted in a significant reduction of femoral in-stent plaque area (control, 40.85 +/- 6.37 mm(2); iNOS, 24.69 +/- 1.8 mm(2); p = 0.03). Coronary in-stent lesion formation was reduced by about 45% as determined by histologic morphometry (control, 4.0 +/- 0.29; iNOS, 2.2 +/- 0.30; p < 0.01). In conclusion, this study demonstrates that local intramural delivery of iNOS lipoplexes can exert therapeutic effects in inhibiting stent-induced neointimal lesion formation. Together with the nonviral character of this gene therapy approach, these findings may have important impact on the transition of NOS-based gene therapy to clinical practice.


Asunto(s)
Arteriopatías Oclusivas/terapia , Terapia Genética , Óxido Nítrico Sintasa/genética , Stents , Túnica Íntima/patología , Animales , Arteriopatías Oclusivas/etiología , Arteriopatías Oclusivas/patología , Muerte Celular , Estenosis Coronaria/etiología , Estenosis Coronaria/patología , Estenosis Coronaria/terapia , Vectores Genéticos , Inmunohistoquímica , Liposomas , Óxido Nítrico Sintasa/análisis , Óxido Nítrico Sintasa de Tipo II , Porcinos Enanos , Transfección
3.
Cytotechnology ; 41(2-3): 145-51, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19002951

RESUMEN

Embryonic stem cells display the ability to differentiate in vitro into a variety of cell types. This process is induced by embryoid body formation, addition of several soluble growth factors to the culture medium and other strategies. However, none of the used factors is capable to drive differentiation to only one specific celltype. The use of gating technology has allowed to partially overcome this problem. The rational behind this technique is based on the transfection of stem cells with a transgene carrying expression cassettes for a cell type specific promoter, regulating expression ofa selectable marker to select one cell lineage from other cell lineages.Using this system, we have obtained insulin-secreting cells by transfecting mouse embryonic stem cells with a DNA construct providing resistance to neomycin under the control of the regulatory regions of the human insulin gene. Furthermore, gating technology has been successfully used to isolate other cell types such as cardiomyocytes and neural precursors from undifferentiated embryonic stem cells. This review focuses on the possibilities offered by this technology in embryonic stem cell bioengineering, mainly to obtain insulin-secreting cells. Advantages and considerations of this selection system will be also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA