RESUMEN
Oxidative damage has been reported to be involved in the pathogenesis of diabetic neuropathy and neurodegenerative diseases. Recent evidence suggests that the antidiabetic drug metformin prevents oxidative stress-related cellular death in non-neuronal cell lines. In this report, we point to the direct neuroprotective effect of metformin, using the etoposide-induced cell death model. The exposure of intact primary neurons to this cytotoxic insult induced permeability transition pore (PTP) opening, the dissipation of mitochondrial membrane potential (DeltaPsim), cytochrome c release, and subsequent death. More importantly, metformin, together with the PTP classical inhibitor cyclosporin A (CsA), strongly mitigated the activation of this apoptotic cascade. Furthermore, the general antioxidant N-acetyl-L: -cysteine also prevented etoposide-promoted neuronal death. In addition, metformin was shown to delay CsA-sensitive PTP opening in permeabilized neurons, as triggered by a calcium overload, probably through its mild inhibitory effect on the respiratory chain complex I. We conclude that (1) etoposide-induced neuronal death is partly attributable to PTP opening and the disruption of DeltaPsim, in association with the emergence of oxidative stress, and (2) metformin inhibits this PTP opening-driven commitment to death. We thus propose that metformin, beyond its antihyperglycemic role, can also function as a new therapeutic tool for diabetes-associated neurodegenerative disorders.