Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanomedicine ; 10(3): 561-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24262997

RESUMEN

We utilized ferritin protein cage nanoparticles (FPCN) as antigen delivery nanoplatforms for DC-based vaccine development and investigated DC-mediated antigen-specific immune responses. Antigenic peptides, OT-1 (SIINFEKL) or OT-2 (ISQAVHAAHAEINEAGR) which are derived from ovalbumin, were genetically introduced either onto the exterior surface or into the interior cavity of FPCN. FPCN carrying antigenic peptides (OT-1-FPCN and OT-2-FPCN) were effectively delivered to DCs and processed within endosomes. Delivered antigenic peptides, OT-1 or OT-2, to DCs successfully induced antigen-specific CD8(+) or CD4(+) T cell proliferations both in vitro and in vivo. Naïve mice immunized with OT-1-FPCN efficiently differentiated OT-1 specific CD8(+) T cells into functional effector cytotoxic T cells resulting in selective killing of antigen-specific target cells. Effective differentiation of proliferated OT-2 specific CD4(+) T cells into functional CD4(+) Th1 and Th2 cells was confirmed with the productions of IFN-γ/IL-2 and IL-10/IL-13 cytokines, respectively. FROM THE CLINICAL EDITOR: In this study, the authors utilized ferritin protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development and investigated DC-mediated antigen-specific immune responses using strong model antigens derived from ovalbumin, suggesting potential future clinical applicability of this or similar techniques.


Asunto(s)
Antígenos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Ferritinas/química , Nanopartículas/química , Ovalbúmina/administración & dosificación , Secuencia de Aminoácidos , Animales , Antígenos/química , Antígenos/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Células Cultivadas , Citocinas/inmunología , Células Dendríticas/citología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Ovalbúmina/química , Ovalbúmina/inmunología , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Células TH1/citología , Células TH1/inmunología , Células Th2/citología , Células Th2/inmunología
2.
Cells ; 11(24)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552858

RESUMEN

Thyroid hormone receptor-interacting protein 13 (TRIP13) participates in various regulatory steps related to the cell cycle, such as the mitotic spindle assembly checkpoint and meiotic recombination, possibly by interacting with members of the HORMA domain protein family. Recently, it was reported that TRIP13 could regulate the choice of the DNA repair pathway, i.e., homologous recombination (HR) or nonhomologous end-joining (NHEJ). However, TRIP13 is recruited to DNA damage sites within a few seconds after damage and may therefore have another function in DNA repair other than regulation of the pathway choice. Furthermore, the depletion of TRIP13 inhibited both HR and NHEJ, suggesting that TRIP13 plays other roles besides regulation of choice between HR and NHEJ. To explore the unidentified functions of TRIP13 in the DNA damage response, we investigated its genome-wide interaction partners in the context of DNA damage using quantitative proteomics with proximity labeling. We identified MRE11 as a novel interacting partner of TRIP13. TRIP13 controlled the recruitment of MDC1 to DNA damage sites by regulating the interaction between MDC1 and the MRN complex. Consistently, TRIP13 was involved in ATM signaling amplification. Our study provides new insight into the function of TRIP13 in immediate-early DNA damage sensing and ATM signaling activation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Nucleares , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN
3.
Mol Cells ; 15(2): 176-80, 2003 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-12803479

RESUMEN

Several recently identified chemokines, Lkn-1, CKbeta8-1, MRP-2, and Mu C10 (MRP-1), are classified as C6 beta-chemokines. All of these chemokines have been found to suppress colony formation by bone marrow (BM) myeloid progenitors. Since cord blood (CB), like BM, contains CD34-positive cells, we examined the effects of these chemokines on CD34+ cells isolated from human CB. Lkn-1 and CKbeta8-1 suppressed colony formation by multi-potential granulocyte erythroid mega-karyocyte macrophages (CFU-GEMM), granulocyte-macrophages (CFU-GM), and erythroid (BFU-E) cells among the CD34+ cells from CB. CC chemokine receptor 1 (CCR1) that is known to be a receptor for Lkn-1 and CKbeta8-1 in neutrophils, monocytes, and lymphocytes, was also present on the surface of CD34+ cells from CB. Taken together these results suggest that Lkn-1 and CKbeta8-1 are active in inhibiting myeloid progenitor cells from both BM and CB. Macrophage inflammatory protein related protein-2 (mMRP-2) and Mu C10 (mMRP-1), which are murine C6 beta-chemokines, also inhibited colony formation by CB CD34+ cells. The inhibitory activity of these chemokines suggests that they may protect hematopoietic progenitors from the cytotoxic effects of the antiblastic drugs used in cancer therapy.


Asunto(s)
Diferenciación Celular/fisiología , Quimiocinas CC/metabolismo , Sangre Fetal/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Antígenos CD34/metabolismo , Médula Ósea/fisiología , Humanos , Proteínas Inflamatorias de Macrófagos/metabolismo , Ratones , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos
4.
Clin Exp Vaccine Res ; 3(2): 227-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25003097

RESUMEN

PURPOSE: Protein cages are promising nanoplatform candidates for efficient delivery systems due to their homogenous size and structure with high biocompatibility and biodegradability. In this study, we investigate the potential of lumazine synthase protein cage as an antigen delivery system to dendritic cells (DCs), which induce antigen-specific T cell proliferation. MATERIALS AND METHODS: Ovalbumin (OVA) peptides OT-1 (SIINFEKL) and OT-2 (ISQAVHAAHAEINEAGR) were genetically inserted to lumazine synthase and each protein cage was over-expressed in Escherichia coli as a soluble protein. The efficiency of antigen delivery and the resulting antigen-specific T cell proliferation by DCs was examined in vitro as well as in vivo. RESULTS: We successfully generated and characterized OVA peptides carrying lumazine synthase protein cages. The OT-1 and OT-2 peptides carried by lumazine synthases were efficiently delivered and processed by DCs in vitro as well as in vivo, and induced proliferation of OT-1-specific CD8(+)T cells and OT-2-specific CD4(+)T cells. CONCLUSION: Our data demonstrate the potential of lumazine synthase protein cage being used as a novel antigen delivery system for DC-based vaccine development in future clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA