Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233307

RESUMEN

Salix pseudolasiogyne (Salicaceae) is a willow tree and has been used as a medicinal herb in Korea to treat pain and fever. As a part of an ongoing study to identify bioactive natural products, potential anti-adipogenic compounds were investigated using the ethanol (EtOH) extract of S. pseudolasiogyne twigs. Phytochemical investigation of the EtOH extracts using liquid chromatography-mass spectrometry (LC/MS) led to the separation of two compounds, oregonin (1) and 2'-O-acetylsalicortin (2). The structures of the isolates were identified using nuclear magnetic resonance spectroscopy and LC/MS analysis. To the best of our knowledge, it is the first report identifying oregonin (1) in twigs of S. pseudolasiogyne. Here, we found that the isolated compounds, oregonin (1) and 2'-O-acetylsalicortin (2), showed anti-adipogenic effects during 3T3-L1 cell differentiation. Notably, 2'-O-acetylsalicortin (2), at a concentration of 50 µM, significantly suppressed lipid accumulation. Moreover, the mRNA and protein levels of lipogenic and adipogenic transcription factors were reduced in 2'-O-acetylsalicortin (2)-treated 3T3-L1 cells. Taken together, these results indicate that 2'-O-acetylsalicortin (2), isolated from S. pseudolasiogyne twigs, has the potential to be applied as a therapeutic agent to effectively control adipocyte differentiation, a critical stage in the progression of obesity.


Asunto(s)
Salix , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Diferenciación Celular , Diarilheptanoides , Etanol/farmacología , Lípidos/farmacología , Ratones , PPAR gamma/metabolismo , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , ARN Mensajero/metabolismo , Salix/genética , Factores de Transcripción/metabolismo
2.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296558

RESUMEN

Salix pseudolasiogyne (Salicaceae), the "weeping willow," has been used in traditional Korean medicine to treat pain and fever due to its high concentrations of salicylic acid and salicin. The present study investigated bioactive compounds from S. pseudolasiogyne twigs to discover bioactive natural products. Phytochemical investigation of the ethanol (EtOH) extract of S. pseudolasiogyne twigs followed by liquid chromatography-mass spectrometry (LC/MS)-based analysis led to the isolation of two salicin derivatives, salicortinol and salicortin, the structures of which were determined by interpretation of their NMR spectra and data from the LC/MS analysis. To the best of our knowledge, this is the first report of salicortinol isolated from S. pseudolasiogyne. The isolated compounds were evaluated for their anti-adipogenic effects in 3T3-L1 cells. Both salicortinol and salicortin were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, salicortin exhibited a strong inhibitory effect on lipid accumulation. Furthermore, salicortin inhibited the expression of lipogenic and adipogenic transcription factors, including FASN, FABP4, C/EBPα, C/EBPß, and PPARγ, without inducing cytotoxicity. These results suggest that salicortin could be a potential therapeutic compound for the prevention or treatment of metabolic disorders such as obesity.


Asunto(s)
Salix , Ratones , Animales , Células 3T3-L1 , Salix/química , PPAR gamma/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Adipogénesis , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Ácido Salicílico/farmacología , Etanol/farmacología , Lípidos/farmacología
3.
Food Chem Toxicol ; 190: 114794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849046

RESUMEN

Phytochemical analysis of the methanolic extracts of Jatropha podagrica stalks and roots using liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six compounds: corchoionoside C (1), isobiflorin (2), fraxin (3), hovetrichoside C (4), fraxetin (5), and corillagin (6). The isolated compounds (1-6) were tested for their cytotoxicity against MDA-MB-231 human breast cancer cells. Remarkably, compound 4 (hovetrichoside C) exhibited robust cytotoxicity against MDA-MB-231 cells, displaying an IC50 value of 50.26 ± 1.22 µM, along with an apoptotic cell death rate of 24.21 ± 2.08% at 100 µM. Treatment involving compound 4 amplified protein levels of cleaved caspase-8, -9, -3, -7, BH3-interacting domain death agonist (Bid), Bcl-2-associated X protein (Bax), and cleaved poly (ADP-ribose) polymerase (cleaved PARP), while concurrently reducing B-cell lymphoma 2 (Bcl-2) levels. In totality, these findings underscore that hovetrichoside C (4) possesses anti-breast cancer activity that revolves around apoptosis induction via both extrinsic and intrinsic signaling pathways.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Jatropha , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Jatropha/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
Plants (Basel) ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475547

RESUMEN

Salix chaenomeloides Kimura, commonly known as pussy willow, is a deciduous shrub and tree belonging to the Salicaceae family. The genus Salix spp. has been known as a healing herb for the treatment of fever, inflammation, and pain relief. The current study aimed to investigate the potential bioactive natural products from S. chaenomeloides leaves and evaluate their antibacterial activity against Helicobacter pylori. A phytochemical investigation of the ethanol (EtOH) extract of S. chaenomeloides leaves led to the isolation of 13 phenolic compounds (1-13) from the ethyl acetate (EtOAc) fraction, which showed antibacterial activity against H. pylori strain 51. The chemical structure of a new phenolic glycoside, chaenomelin (1), was established by a detailed analysis of 1D and 2D (1H-1H correlation spectroscopy (COSY), heteronuclear single-quantum coherence (HSQC), and heteronuclear multiple-bond correlation (HMBC)) nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectroscopy (HR-ESIMS), and chemical reactions. The other known compounds were identified as 5-O-trans-p-coumaroyl quinic acid methyl ester (2), tremulacin (3), citrusin C (4), benzyl 3-O-ß-d-glucopyranosyl-7-hydroxybenzoate (5), tremuloidin (6), 1-[O-ß-d-glucopyranosyl(1→2)-ß-d-glucopyranosyl]oxy-2-phenol (7), arbutin cinnamate (8), tremulacinol (9), catechol (10), 4-hydroxybenzaldehyde (11), kaempferol 3-rutinoside (12), and narcissin (13), based on the comparison of their NMR spectra with the reported data and liquid chromatography/mass spectrometry (LC/MS) analysis. The isolated compounds were evaluated for antibacterial activity against H. pylori strain 51. Among the isolates, 1-[O-ß-d-glucopyranosyl(1→2)-ß-d-glucopyranosyl]oxy-2-phenol (7) and arbutin cinnamate (8) exhibited antibacterial activity against H. pylori strain 51, with inhibitions of 31.4% and 33.9%, respectively, at a final concentration of 100 µM. These results were comparable to that of quercetin (38.4% inhibition), which served as a positive control. Generally, these findings highlight the potential of the active compounds 7 and 8 as antibacterial agents against H. pylori.

5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895949

RESUMEN

Equisetum arvense L. (Equisetaceae), widely known as 'horsetail', is a perennial plant found extensively across Asia. Extracts of E. arvense have been used in traditional medicine, particularly for the treatment of inflammatory disorders. This study aimed to determine the phytochemical compounds in E. arvense ethanolic extract and their anti-inflammatory properties. Subsequently, we isolated and identified nine secondary metabolites, including kaempferol 3,7-di-O-ß-D-glucopyranoside (1), icariside B2 (2), (Z)-3-hexenyl ß-D-glucopyranoside (3), luteolin 5-O-ß-D-glucopyranoside (4), 4-O-ß-D-glucopyranosyl caffeic acid (5), clemastanin B (6), 4-O-caffeoylshikimic acid (7), (7S,8S)-threo-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-4-O-ß-D-glucopyranoside (8), and 3-O-caffeoylshikimic acid (9). The chemical structures of the isolated compounds (1-9) were elucidated using HR-ESI-MS data, NMR spectra, and ECD data. Next, the anti-inflammatory effects of the isolates were evaluated in tumor necrosis factor (TNF)α/interferon (IFN)γ-induced HaCaT, a human keratinocyte cell line. Among the isolates, compound 3 showed the highest inhibitory effect on the expression of pro-inflammatory chemokines, followed by compounds 6 and 8. Correspondingly, the preceding isolates inhibited TNFα/IFNγ-induced activation of pro-inflammatory transcription factors, signal transducer and activator of transcription 1, and nuclear factor-κB. Collectively, E. arvense could be employed for the development of prophylactic or therapeutic agents for improving dermatitis.

6.
Plants (Basel) ; 12(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38068607

RESUMEN

Ginkgo biloba L. stands as one of the oldest living tree species, exhibiting a diverse range of biological activities, including antioxidant, neuroprotective, anti-inflammatory, and cardiovascular activities. As part of our ongoing discovery of novel bioactive components from natural sources, we directed our focus toward the investigation of potential bioactive compounds from G. biloba fruit. The profiles of its chemical compounds were examined using a Global Natural Products Social (GNPS)-based molecular networking analysis. Guided by this, we successfully isolated and characterized 11 compounds from G. biloba fruit, including (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-ß-D-glucopyranoside (3), vanillic acid 4-O-ß-D-glucopyranoside (4), syringic acid 4-O-ß-D-glucopyranoside (5), (E)-ferulic acid 4-O-ß-D-glucoside (6), (E)-sinapic acid 4-O-ß-D-glucopyranoside (7), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-ß-D-glucopyranoside (8), eucomic acid (9), rutin (10), and laricitrin 3-rutinoside (11). The structural identification was validated through a comprehensive analysis involving nuclear magnetic resonance (NMR) spectroscopic data and LC/MS analyses. All isolated compounds were evaluated using an E-screen assay for their estrogen-like effects in MCF-7 cells. As a result, compounds 2, 3, 4, 8, and 9 promoted cell proliferation in MCF-7 cells, and these effects were mitigated by the ER antagonist, ICI 182,780. In particular, cell proliferation increased most significantly to 140.9 ± 6.5% after treatment with 100 µM of compound 2. The mechanism underlying the estrogen-like effect of syringin (2) was evaluated using a Western blot analysis to determine the expression of estrogen receptor α (ERα). We found that syringin (2) induced an increase in the phosphorylation of ERα. Overall, these experimental results suggest that syringin (2) can potentially aid the control of estrogenic activity during menopause.

7.
Plants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616234

RESUMEN

Salix species, including willow trees, are distributed in the temperate regions of Asian countries, including South Korea. Willow trees are used to treat pain and inflammatory diseases. Due to the medicinal properties of willow trees, pharmacological studies of other Salix spp. have gained attention; however, only a few studies have investigated the phytochemicals of these species. As part of our ongoing natural product research to identify bioactive phytochemicals and elucidate their chemical structures from natural resources, we investigated the marker compounds from indigenous Korean Salix species, namely, Salix triandra, S. chaenomeloides, S. gracilistyla, S. koriyanagi, S. koreensis, S. pseudolasiogyne, S. caprea, and S. rorida. The ethanolic extract of each Salix sp. was investigated using high-performance liquid chromatography combined with thin-layer chromatography and liquid chromatography−mass spectrometry-based analysis, and marker compounds of each Salix sp. were isolated. The chemical structures of the marker compounds (1−8), 3-(4-hydroxyphenyl)propyl ß-D-glucopyranoside (1), 2-O-acetylsalicin (2), 1-O-p-coumaroyl glucoside (3), picein (4), isograndidentatin B (5), 2'-O-acetylsalicortin (6), dihydromyricetin (7), and salicin (8) were elucidated via nuclear magnetic resonance spectroscopy and high-resolution liquid chromatography−mass spectrometry using ultrahigh-performance liquid chromatography coupled with a G6545B Q-TOF MS system with a dual electrospray ionization source. The identified marker compounds 1−8 were examined for their antimicrobial effects against plant pathogenic fungi and bacteria. Dihydromyricetin (7) exhibited antibacterial activity against Staphylococcus aureus, inducing 32.4% inhibition at a final concentration of 125 µg/mL with an MIC50 value of 250 µg/mL. Overall, this study isolated the marker compounds of S. triandra, S. chaenomeloides, S. gracilistyla, S. koriyanagi, S. koreensis, S. pseudolasiogyne, S. caprea, and S. rorida and identified the anti-Staphylococcus aureus bacterial compound dihydromyricetin.

8.
J Med Food ; 20(8): 763-776, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28686516

RESUMEN

Cirsium setidens Nakai, a wild perennial herb, grows mainly in Gangwon province, Korea, and has been reported to contain bioactive ingredients with various medicinal activities, including the treatment of edema, bleeding, and hemoptysis. However, the potential antiobesity effects of C. setidens Nakai have not been fully investigated. This study evaluated the antiobesity effect of standardized C. setidens Nakai ethanolic extract (CNE) in 3T3-L1 adipocytes and in obese C57BL/6J mice fed a high-fat diet. CNE suppressed the expression of lipogenic genes and increased the expression of lipolytic genes. The antiadipogenic and antilipogenic effects of CNE appear to be mediated by the inhibition of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) expressions. Moreover, CNE stimulated fatty acid oxidation in an AMPK-dependent manner. CNE-treated groups of C57BL/6J mice showed reduced body weights and adipose tissue weight and improved serum lipid profiles through the downregulation of PPARγ, C/EBPα, fatty acid binding protein 4 (FABP4), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (FAS) and the upregulation of adiponectin and carnitine palmitoyltransferase-1 (CPT-1) in obese C57BL/6J mice fed a high-fat diet. These results suggest that CNE may have an antiobesity effect on adipogenesis and lipid metabolism in vitro and in vivo and present the possibility of developing a treatment for obesity with nontoxic natural resources.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/administración & dosificación , Cirsium/química , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA