Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Chem Phys ; 158(1): 014104, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610956

RESUMEN

The Hellmann-Feynman (HF) theorem provides a way to compute forces directly from the electron density, enabling efficient force calculations for large systems through machine learning (ML) models for the electron density. The main issue holding back the general acceptance of the HF approach for atom-centered basis sets is the well-known Pulay force which, if naively discarded, typically constitutes an error upward of 10 eV/Å in forces. In this work, we demonstrate that if a suitably augmented Gaussian basis set is used for density functional calculations, the Pulay force can be suppressed, and HF forces can be computed as accurately as analytical forces with state-of-the-art basis sets, allowing geometry optimization and molecular dynamics to be reliably performed with HF forces. Our results pave a clear path forward for the accurate and efficient simulation of large systems using ML densities and the HF theorem.

2.
Biophys J ; 121(20): 3883-3895, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36057785

RESUMEN

One of the fundamental limitations of accurately modeling biomolecules like DNA is the inability to perform quantum chemistry calculations on large molecular structures. We present a machine learning model based on an equivariant Euclidean neural network framework to obtain accurate ab initio electron densities for arbitrary DNA structures that are much too large for conventional quantum methods. The model is trained on representative B-DNA basepair steps that capture both base pairing and base stacking interactions. The model produces accurate electron densities for arbitrary B-DNA structures with typical errors of less than 1%. Crucially, the error does not increase with system size, which suggests that the model can extrapolate to large DNA structures with negligible loss of accuracy. The model also generalizes reasonably to other DNA structural motifs such as the A- and Z-DNA forms, despite being trained on only B-DNA configurations. The model is used to calculate electron densities of several large-scale DNA structures, and we show that the computational scaling for this model is essentially linear. We also show that this machine learning electron density model can be used to calculate accurate electrostatic potentials for DNA. These electrostatic potentials produce more accurate results compared with classical force fields and do not show the usual deficiencies at short range.


Asunto(s)
ADN Forma B , ADN de Forma Z , Teoría Cuántica , Modelos Moleculares , Electrones , ADN/química , Redes Neurales de la Computación
3.
J Chem Phys ; 150(8): 084104, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823770

RESUMEN

Pauli repulsion is a key component of any theory of intermolecular interactions. Although Pauli or exchange repulsion has its origin in the quantum mechanical nature of electrons, it is possible to describe the resulting energetic effects via a classical model in terms of the overlap of electron densities. In fact, closed shell intermolecular repulsion can be explained as a diminution of election density in the internuclear region resulting in decreased screening of nuclear charges and increased nuclear-nuclear repulsion. We provide a concise anisotropic repulsion formulation using the atomic multipoles from the Atomic Multipole Optimized Energetics for Biomolecular Applications force field to describe the electron density at each atom in a larger system. Mathematically, the proposed model consists of damped pairwise exponential multipolar repulsion interactions truncated at short range, which are suitable for use in compute-intensive biomolecular force fields and molecular dynamics simulations. Parameters for 26 atom classes encompassing most organic molecules are derived from a fit to Symmetry Adapted Perturbation Theory exchange repulsion energies for the S101 dimer database. Several applications of the multipolar Pauli repulsion model are discussed, including noble gas interactions, analysis of stationary points on the water dimer potential surface, and the directionality of several halogen bonding interactions.

4.
J Chem Phys ; 149(8): 084115, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30193468

RESUMEN

Accurate modeling of dispersion is critical to the goal of predictive biomolecular simulations. To achieve this accuracy, a model must be able to correctly capture both the short-range and asymptotic behavior of dispersion interactions. We present here a damped dispersion model based on the overlap of charge densities that correctly captures both regimes. The overlap damped dispersion model represents a classical physical interpretation of dispersion: the interaction between the instantaneous induced dipoles of two distinct charge distributions. This model is shown to be an excellent fit with symmetry adapted perturbation theory dispersion energy calculations, yielding an RMS error on the S101x7 database of 0.5 kcal/mol. Moreover, the damping function used in this model is wholly derived and parameterized from the electrostatic dipole-dipole interaction, making it not only physically grounded but transferable as well.

5.
J Comput Chem ; 37(5): 494-506, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26814845

RESUMEN

We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions.


Asunto(s)
Benceno/química , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Programas Informáticos , Agua/química , Anisotropía , Cationes Bivalentes , Cationes Monovalentes , Dimerización , Cinética , Teoría Cuántica , Soluciones , Electricidad Estática , Termodinámica
6.
Phys Chem Chem Phys ; 19(1): 276-291, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27901142

RESUMEN

The principal challenge of using classical physics to model biomolecular interactions is capturing the nature of short-range interactions that drive biological processes from nucleic acid base stacking to protein-ligand binding. In particular most classical force fields suffer from an error in their electrostatic models that arises from an ability to account for the overlap between charge distributions occurring when molecules get close to each other, known as charge penetration. In this work we present a simple, physically motivated model for including charge penetration in the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) force field. With a function derived from the charge distribution of a hydrogen-like atom and a limited number of parameters, our charge penetration model dramatically improves the description of electrostatics at short range. On a database of 101 biomolecular dimers, the charge penetration model brings the error in the electrostatic interaction energy relative to the ab initio SAPT electrostatic interaction energy from 13.4 kcal mol-1 to 1.3 kcal mol-1. The model is shown not only to be robust and transferable for the AMOEBA model, but also physically meaningful as it universally improves the description of the electrostatic potential around a given molecule.

7.
PLoS One ; 19(2): e0297502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358990

RESUMEN

Accurately modeling large biomolecules such as DNA from first principles is fundamentally challenging due to the steep computational scaling of ab initio quantum chemistry methods. This limitation becomes even more prominent when modeling biomolecules in solution due to the need to include large numbers of solvent molecules. We present a machine-learned electron density model based on a Euclidean neural network framework that includes a built-in understanding of equivariance to model explicitly solvated double-stranded DNA. By training the machine learning model using molecular fragments that sample the key DNA and solvent interactions, we show that the model predicts electron densities of arbitrary systems of solvated DNA accurately, resolves polarization effects that are neglected by classical force fields, and captures the physics of the DNA-solvent interaction at the ab initio level.


Asunto(s)
ADN , Redes Neurales de la Computación , Solventes
8.
J Phys Chem B ; 126(39): 7579-7594, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36166814

RESUMEN

Polarizability, or the tendency of the electron distribution to distort under an electric field, often depends on the local chemical environment. For example, the polarizability of a chloride ion is larger in gas phase compared to a chloride ion solvated in water. This effect is due to the restriction the Pauli exclusion principle places on the allowed electron states. Because no two electrons can occupy the same state, when a highly polarizable atom comes in close contact with other atoms or molecules, the space of allowed states can dramatically decrease. This constraint suggests that an accurate molecular mechanics polarizability model should depend on the radial distance between neighboring atoms. This paper introduces a variable polarizability model within the framework of the HIPPO (Hydrogen-like Intermolecular Polarizable Potential) force field, by damping the polarizability as a function of the orbital overlap of two atoms. This effectively captures the quantum mechanical exchange polarization effects, without explicit utilization of antisymmetrized wave functions. We show that the variable polarizability model remarkably improves the two-body polarization energies and three-body energies of ion-ion and ion-water systems. Under this model, no manual tuning of atomic polarizabilities for monatomic ions is required; the gas-phase polarizability can be used because an appropriate damping function is able to correct the polarizability at short range.


Asunto(s)
Cloruros , Simulación de Dinámica Molecular , Anisotropía , Hidrógeno , Agua/química
9.
J Chem Theory Comput ; 18(1): 580-594, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34914383

RESUMEN

The growing interest in the effects of external electric fields on reactive processes requires predictive methods that can reach longer length and time scales than quantum mechanical simulations. Recently, many studies have included electric fields in ReaxFF, a widely used reactive molecular dynamics method. In the case of modeling an external electric field, the charge distribution method used in ReaxFF is critical. The most common charge distribution method used in previous studies of electric fields is the charge equilibration (QEq) method, which assumes that the system is a contiguous conductor and that charge transfer can occur across any distance. In contrast, many systems of interest are insulators or semiconductors, and long-distance charge transfer should not occur in response to a small difference in potential. This study focuses on the limitations of the QEq method in the context of water in an external electric field. We demonstrate that QEq can predict unphysical charge distributions and exhibits properties that do not converge as a function of system size. Furthermore, we show that electric fields within the recently developed atom-condensed Kohn-Sham density functional theory (DFT) approximated to the second-order (ACKS2) approach address the major limitations of electric fields in QEq. With ACKS2, we observe more physical charge distributions and properties that converge as a function of system size. We do not suggest that ACKS2 is perfect in all circumstances but rather show specific cases where it addresses the major shortcomings of QEq in the context of an external electric field.

10.
J Chem Theory Comput ; 17(11): 7056-7084, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699197

RESUMEN

A new empirical potential for efficient, large scale molecular dynamics simulation of water is presented. The HIPPO (Hydrogen-like Intermolecular Polarizable POtential) force field is based upon the model electron density of a hydrogen-like atom. This framework is used to derive and parametrize individual terms describing charge penetration damped permanent electrostatics, damped polarization, charge transfer, anisotropic Pauli repulsion, and damped dispersion interactions. Initial parameter values were fit to Symmetry Adapted Perturbation Theory (SAPT) energy components for ten water dimer configurations, as well as the radial and angular dependence of the canonical dimer. The SAPT-based parameters were then systematically refined to extend the treatment to water bulk phases. The final HIPPO water model provides a balanced representation of a wide variety of properties of gas phase clusters, liquid water, and ice polymorphs, across a range of temperatures and pressures. This water potential yields a rationalization of water structure, dynamics, and thermodynamics explicitly correlated with an ab initio energy decomposition, while providing a level of accuracy comparable or superior to previous polarizable atomic multipole force fields. The HIPPO water model serves as a cornerstone around which similarly detailed physics-based models can be developed for additional molecular species.

11.
Chem Sci ; 12(25): 8920-8930, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34257893

RESUMEN

Potassium channels modulate various cellular functions through efficient and selective conduction of K+ ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K+ ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations.

12.
J Chem Theory Comput ; 14(10): 5273-5289, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30176213

RESUMEN

The Tinker software, currently released as version 8, is a modular molecular mechanics and dynamics package written primarily in a standard, easily portable dialect of Fortran 95 with OpenMP extensions. It supports a wide variety of force fields, including polarizable models such as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. The package runs on Linux, macOS, and Windows systems. In addition to canonical Tinker, there are branches, Tinker-HP and Tinker-OpenMM, designed for use on message passing interface (MPI) parallel distributed memory supercomputers and state-of-the-art graphical processing units (GPUs), respectively. The Tinker suite also includes a tightly integrated Java-based graphical user interface called Force Field Explorer (FFE), which provides molecular visualization capabilities as well as the ability to launch and control Tinker calculations.

13.
J Chem Theory Comput ; 11(6): 2609-2618, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26413036

RESUMEN

Classical molecular mechanics force fields typically model interatomic electrostatic interactions with point charges or multipole expansions, which can fail for atoms in close contact due to the lack of a description of penetration effects between their electron clouds. These short-range penetration effects can be significant and are essential for accurate modeling of intermolecular interactions. In this work we report parametrization of an empirical charge-charge function previously reported (Piquemal J.-P.; J. Phys. Chem. A2003, 107, 10353) to correct for the missing penetration term in standard molecular mechanics force fields. For this purpose, we have developed a database (S101×7) of 101 unique molecular dimers, each at 7 different intermolecular distances. Electrostatic, induction/polarization, repulsion, and dispersion energies, as well as the total interaction energy for each complex in the database are calculated using the SAPT2+ method (Parker T. M.; J. Chem. Phys.2014, 140, 094106). This empirical penetration model significantly improves agreement between point multipole and quantum mechanical electrostatic energies across the set of dimers and distances, while using only a limited set of parameters for each chemical element. Given the simplicity and effectiveness of the model, we expect the electrostatic penetration correction will become a standard component of future molecular mechanics force fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA