Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37683634

RESUMEN

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Asunto(s)
Bacterias , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Metagenoma , Metagenómica , Filogenia , Actinobacteria/fisiología
2.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30343895

RESUMEN

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , N-Glicosil Hidrolasas/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP-Ribosilación , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Dominio Catalítico , Proteínas del Citoesqueleto/antagonistas & inhibidores , Escherichia coli/crecimiento & desarrollo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Serratia/metabolismo , Imagen de Lapso de Tiempo
3.
Nature ; 583(7817): 631-637, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641830

RESUMEN

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Citidina Desaminasa/metabolismo , ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Mitocondrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Respiración de la Célula/genética , Citidina/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Fosforilación Oxidativa , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato , Sistemas de Secreción Tipo VI/metabolismo
4.
Nature ; 575(7781): 224-228, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666699

RESUMEN

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Asunto(s)
Bacteroidetes , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Animales , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Genes Bacterianos/genética , Humanos , Ratones , Interacciones Microbianas/genética , Interacciones Microbianas/inmunología , Familia de Multigenes/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología
5.
Proc Natl Acad Sci U S A ; 116(29): 14740-14748, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262826

RESUMEN

Global growth in antibiotic resistance is a major social problem. A high level of resistance to fluoroquinolones requires the concurrent presence of at least 3 mutations in the target proteins-2 in DNA gyrase (GyrA) and 1 in topoisomerase IV (ParC), which occur in a stepwise manner. In the Escherichia coli chromosome, the gyrA and parC loci are positioned about 1 Mb away from each other. Here we show that the 3 fluoroquinolone resistance mutations are tightly associated genetically in naturally occurring strains. In the latest pandemic uropathogenic and multidrug-resistant E. coli clonal group ST1193, the mutant variants of gyrA and parC were acquired not by a typical gradual, stepwise evolution but all at once. This happened as part of 11 simultaneous homologous recombination events involving 2 phylogenetically distant strains of E. coli, from an uropathogenic clonal complex ST14 and fluoroquinolone-resistant ST10. The gene exchanges swapped regions between 0.5 and 139 Kb in length (183 Kb total) spread along 976 Kb of chromosomal DNA around and between gyrA and parC loci. As a result, all 3 fluoroquinolone resistance mutations in GyrA and ParC have simultaneously appeared in ST1193. Based on molecular clock estimates, this potentially happened as recently as <12 y ago. Thus, naturally occurring homologous recombination events between 2 strains can involve numerous chromosomal gene locations simultaneously, resulting in the transfer of distant but tightly associated genetic mutations and emergence of a both highly pathogenic and antibiotic-resistant strain with a rapid global spread capability.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Fluoroquinolonas/farmacología , Sitios Genéticos , Recombinación Homóloga , Escherichia coli Uropatógena/genética , Cromosomas Bacterianos/genética , Girasa de ADN/genética , Topoisomerasa de ADN IV/genética , Proteínas de Escherichia coli/genética , Fluoroquinolonas/uso terapéutico , Transferencia de Gen Horizontal , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Pandemias , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad
6.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540992

RESUMEN

While microbiome studies have focused on diversity at the species level or higher, bacterial species in microbiomes are represented by different, often multiple, strains. These strains could be clonally and phenotypically very different, making assessment of strain content vital to a full understanding of microbiome function. This is especially important with respect to antibiotic-resistant strains, the clonal spread of which may be dependent on competition between them and susceptible strains from the same species. The pandemic, multidrug-resistant, and highly pathogenic Escherichia coli subclone ST131-H30 (H30) is of special interest, as it has already been found persisting in the gut and bladder in healthy people. In order to rapidly assess E. coli clonal diversity, we developed a novel method based on deep sequencing of two loci used for sequence typing, along with an algorithm for analysis of the resulting data. Using this method, we assessed fecal and urinary samples from healthy women carrying H30 and were able to uncover considerable diversity, including strains with frequencies at <1% of the E. coli population. We also found that, even in the absence of antibiotic use, H30 could completely dominate the gut and, especially, urine of healthy carriers. Our study offers a novel tool for assessing a species' clonal diversity (clonobiome) within the microbiome, which could be useful in studying the population structure and dynamics of multidrug-resistant and/or highly pathogenic strains in their natural environments.IMPORTANCE Bacterial species in the microbiome are often represented by multiple genetically and phenotypically different strains, making insight into subspecies diversity critical to a full understanding of the microbiome, especially with respect to opportunistic pathogens. However, methods allowing efficient high-throughput clonal typing are not currently available. This study combines a conventional E. coli typing method with deep amplicon sequencing to allow analysis of many samples concurrently. While our method was developed for E. coli, it may be adapted for other species, allowing microbiome researchers to assess clonal strain diversity in natural samples. Since assessment of subspecies diversity is particularly important for understanding the spread of antibiotic resistance, we applied our method to the study of a pandemic multidrug-resistant E. coli clone. The results we present suggest that this clone could be highly competitive in healthy carriers and that the mechanisms of colonization by such clones need to be studied.


Asunto(s)
Infecciones por Escherichia coli/diagnóstico , Escherichia coli/genética , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Orina/microbiología , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Persona de Mediana Edad
7.
Am J Respir Crit Care Med ; 195(12): 1617-1628, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28222269

RESUMEN

RATIONALE: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. OBJECTIVES: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. METHODS: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. MEASUREMENTS AND MAIN RESULTS: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. CONCLUSIONS: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.


Asunto(s)
Aminofenoles/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Inflamación/prevención & control , Quinolonas/uso terapéutico , Infecciones del Sistema Respiratorio/prevención & control , Adulto , Agonistas de los Canales de Cloruro/uso terapéutico , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Masculino , Infecciones del Sistema Respiratorio/metabolismo , Esputo/efectos de los fármacos , Esputo/metabolismo , Tomografía Computarizada por Rayos X
8.
J Bacteriol ; 199(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28439032

RESUMEN

We analyzed the within-household evolution of two household-associated Escherichia coli strains from pandemic clonal group ST131-H30, using isolates recovered from five individuals within two families, each of which had a distinct strain. Family 1's strain was represented by a urine isolate from the index patient (older sister) with recurrent cystitis and a blood isolate from her younger sister with fatal urosepsis. Family 2's strain was represented by a urine isolate from the index patient (father) with pyelonephritis and renal abscesses, blood and kidney drainage isolates from the daughter with emphysematous pyelonephritis, and urine and fecal isolates from the mother with cystitis. Collectively, the several variants of each family's strain had accumulated a total of 8 (family 1) and 39 (family 2) point mutations; no two isolates were identical. Of the 47 total mutations, 36 resulted in amino acid changes or truncation of coded proteins. Fourteen such mutations (39%) targeted genes encoding transcriptional regulators, and 9 (25%) involved DNA-binding transcription factors (TFs), which significantly exceeded the relative contribution of TF genes to the isolates' genomes (∼6%). At least one-half of the transcriptional regulator mutations were inactivating, based on phenotypic and/or transcriptional analysis. In particular, inactivating mutations in the global regulator LrhA (repressor of type 1 fimbriae and flagella) occurred in the blood isolates from both households and increased the virulence of E. coli strains in a murine sepsis model. The results indicate that E. coli undergoes adaptive evolution between and/or within hosts, generating subpopulations with distinctive phenotypes and virulence potential.IMPORTANCE The clonal evolution of bacterial strains associated with interhost transmission is poorly understood. We characterized the genome sequences of clonal descendants of two Escherichia coli strains, recovered at different time points from multiple individuals within two households who had different types of urinary tract infection. We found evidence that the E. coli strains underwent extensive mutational diversification between and within these individuals, driven disproportionately by inactivation of transcriptional regulators. In urosepsis isolates, the mutations observed in the global regulator LrhA increased bacterial virulence in a murine sepsis model. Our findings help in understanding the adaptive dynamics and strategies of E. coli during short-term natural evolution.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/fisiología , Elementos Reguladores de la Transcripción/fisiología , Clonación Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Polimorfismo de Nucleótido Simple , Elementos Reguladores de la Transcripción/genética
10.
J Bacteriol ; 197(12): 2027-35, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25845845

RESUMEN

UNLABELLED: Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE: Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Enfermedades Transmisibles Emergentes/microbiología , Genoma Bacteriano , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/clasificación , Enfermedades Transmisibles Emergentes/epidemiología , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Biblioteca de Genes , Humanos , Mutación , Plásmidos
11.
Am J Pathol ; 184(5): 1309-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24637292

RESUMEN

Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 µg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.


Asunto(s)
Envejecimiento/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Tracto Gastrointestinal/patología , Técnicas de Inactivación de Genes , Animales , Atrofia , Bacterias/crecimiento & desarrollo , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hurones , Tracto Gastrointestinal/anomalías , Humanos , Moco/metabolismo , Especificidad de Órganos
12.
Proc Natl Acad Sci U S A ; 109(35): E2343-52, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22837397

RESUMEN

Genome-wide association studies can identify common differences that contribute to human phenotypic diversity and disease. When genome-wide association studies are combined with approaches that test how variants alter physiology, biological insights can emerge. Here, we used such an approach to reveal regulation of cell death by the methionine salvage pathway. A common SNP associated with reduced expression of a putative methionine salvage pathway dehydratase, apoptotic protease activating factor 1 (APAF1)-interacting protein (APIP), was associated with increased caspase-1-mediated cell death in response to Salmonella. The role of APIP in methionine salvage was confirmed by growth assays with methionine-deficient media and quantitation of the methionine salvage substrate, 5'-methylthioadenosine. Reducing expression of APIP or exogenous addition of 5'-methylthioadenosine increased Salmonellae-induced cell death. Consistent with APIP originally being identified as an inhibitor of caspase-9-dependent apoptosis, the same allele was also associated with increased sensitivity to the chemotherapeutic agent carboplatin. Our results show that common human variation affecting expression of a single gene can alter susceptibility to two distinct cell death programs. Furthermore, the same allele that promotes cell death is associated with improved survival of individuals with systemic inflammatory response syndrome, suggesting a possible evolutionary pressure that may explain the geographic pattern observed for the frequency of this SNP. Our study shows that in vitro association screens of disease-related traits can not only reveal human genetic differences that contribute to disease but also provide unexpected insights into cell biology.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/fisiología , Caspasa 1/genética , Metionina/metabolismo , Infecciones por Salmonella , Salmonella typhimurium/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células de la Médula Ósea/citología , Caspasa 1/metabolismo , Caspasa 9/metabolismo , Desoxiadenosinas/metabolismo , Predisposición Genética a la Enfermedad/genética , Variación Genética , Células HEK293 , Proyecto Mapa de Haplotipos , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/patología , Tionucleósidos/metabolismo , Adulto Joven
13.
J Bacteriol ; 196(22): 3862-71, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182491

RESUMEN

Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B. mallei is a host-restricted pathogen. The acyl-homoserine lactone quorum-sensing (QS) systems of these three species show a high level of conservation. We used transcriptome sequencing (RNA-seq) to define the quorum-sensing regulon in each species, and we performed a cross-species analysis of the QS-controlled orthologs. Our analysis revealed a core set of QS-regulated genes in all three species, as well as QS-controlled factors shared by only two species or unique to a given species. This global survey of the QS regulons of B. pseudomallei, B. thailandensis, and B. mallei serves as a platform for predicting which QS-controlled processes might be important in different bacterial niches and contribute to the pathogenesis of B. pseudomallei and B. mallei.


Asunto(s)
Burkholderia/genética , Burkholderia/fisiología , Percepción de Quorum/fisiología , Regulón/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/clasificación , Burkholderia mallei/clasificación , Burkholderia mallei/genética , Burkholderia mallei/fisiología , Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Especificidad de la Especie
14.
Clin Infect Dis ; 58(3): 396-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24178246

RESUMEN

Cystic fibrosis gastrointestinal disease includes nutrient malabsorption and intestinal inflammation. We show that the abundances of Escherichia coli in fecal microbiota were significantly higher in young children with cystic fibrosis than in controls and correlated with fecal measures of nutrient malabsorption and inflammation, suggesting that E. coli could contribute to cystic fibrosis gastrointestinal dysfunction.


Asunto(s)
Fibrosis Quística/complicaciones , Disbiosis/complicaciones , Disbiosis/microbiología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/microbiología , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Heces/microbiología , Femenino , Enfermedades Gastrointestinales/etiología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
15.
BMC Genomics ; 15: 355, 2014 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-24886041

RESUMEN

BACKGROUND: Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown. RESULTS: Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools. CONCLUSIONS: Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging.


Asunto(s)
Disentería Bacilar/epidemiología , Shigella dysenteriae/genética , Antibacterianos/farmacología , Brotes de Enfermedades , Farmacorresistencia Bacteriana/efectos de los fármacos , Disentería Bacilar/historia , Evolución Molecular , Variación Genética , Genoma Bacteriano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Historia del Siglo XX , Humanos , Filogenia , Análisis de Secuencia de ADN , Shigella dysenteriae/clasificación , Shigella dysenteriae/aislamiento & purificación
16.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37205512

RESUMEN

The study of bacteria has yielded fundamental insights into cellular biology and physiology, biotechnological advances and many therapeutics. Yet due to a lack of suitable tools, the significant portion of bacterial diversity held within the candidate phyla radiation (CPR) remains inaccessible to such pursuits. Here we show that CPR bacteria belonging to the phylum Saccharibacteria exhibit natural competence. We exploit this property to develop methods for their genetic manipulation, including the insertion of heterologous sequences and the construction of targeted gene deletions. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth and a transposon insertion sequencing genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their Actinobacteria hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii , as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.

17.
Cell Host Microbe ; 31(8): 1359-1370.e7, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453420

RESUMEN

Glutathione (GSH) is an abundant metabolite within eukaryotic cells that can act as a signal, a nutrient source, or serve in a redox capacity for intracellular bacterial pathogens. For Francisella, GSH is thought to be a critical in vivo source of cysteine; however, the cellular pathways permitting GSH utilization by Francisella differ between strains and have remained poorly understood. Using genetic screening, we discovered a unique pathway for GSH utilization in Francisella. Whereas prior work suggested GSH catabolism initiates in the periplasm, the pathway we define consists of a major facilitator superfamily (MFS) member that transports intact GSH and a previously unrecognized bacterial cytoplasmic enzyme that catalyzes the first step of GSH degradation. Interestingly, we find that the transporter gene for this pathway is pseudogenized in pathogenic Francisella, explaining phenotypic discrepancies in GSH utilization among Francisella spp. and revealing a critical role for GSH in the environmental niche of these bacteria.


Asunto(s)
Francisella tularensis , Francisella , Glutatión/metabolismo , Francisella/genética , Francisella/metabolismo , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/metabolismo , Elementos Transponibles de ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Filogenia , Macrófagos/parasitología , Animales , Ratones , Tularemia/microbiología
18.
Bioinformatics ; 27(17): 2429-30, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21765097

RESUMEN

MOTIVATION: The Prokaryotic-genome Analysis Tool (PGAT) is a web-based database application for comparing gene content and sequence across multiple microbial genomes facilitating the discovery of genetic differences that may explain observed phenotypes. PGAT supports database queries to identify genes that are present or absent in user-selected genomes, comparison of sequence polymorphisms in sets of orthologous genes, multigenome display of regions surrounding a query gene, comparison of the distribution of genes in metabolic pathways and manual community annotation. AVAILABILITY AND IMPLEMENTATION: The PGAT website may be accessed at http://nwrce.org/pgat. CONTACT: mbrittna@uw.edu.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Programas Informáticos , Minería de Datos , Bases de Datos de Ácidos Nucleicos , Genes Bacterianos , Internet , Redes y Vías Metabólicas/genética , Polimorfismo Genético
19.
Appl Environ Microbiol ; 78(19): 6812-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22798355

RESUMEN

High-throughput sequencing of cDNA prepared from RNA, an approach known as RNA-seq, is coming into increasing use as a method for transcriptome analysis. Despite its many advantages, widespread adoption of the technique has been hampered by a lack of easy-to-use, integrated, open-source tools for analyzing the nucleotide sequence data that are generated. Here we describe Xpression, an integrated tool for processing prokaryotic RNA-seq data. The tool is easy to use and is fully automated. It performs all essential processing tasks, including nucleotide sequence extraction, alignment, quantification, normalization, and visualization. Importantly, Xpression processes multiplexed and strand-specific nucleotide sequence data. It extracts and trims specific sequences from files and separately quantifies sense and antisense reads in the final results. Outputs from the tool can also be conveniently used in downstream analysis. In this paper, we show the utility of Xpression to process strand-specific RNA-seq data to identify genes regulated by CouR, a transcription factor that controls p-coumarate degradation by the bacterium Rhodopseudomonas palustris.


Asunto(s)
Biología Computacional/métodos , Ácidos Cumáricos/metabolismo , Perfilación de la Expresión Génica/métodos , Redes y Vías Metabólicas/genética , Regulón , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Propionatos , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , Análisis de Secuencia de ADN/métodos
20.
mBio ; 13(5): e0142422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36121157

RESUMEN

Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , ADN Bacteriano/genética , Pseudomonas aeruginosa/genética , Fibrosis Quística/microbiología , Genoma Bacteriano , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Variación Genética , Infecciones por Pseudomonas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA