Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Geochem ; 77: 142-157, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28458447

RESUMEN

The spatial heterogeneity of dissolved arsenic (As) concentrations in shallow groundwater of the Bengal Basin has been attributed to transport of As (and reactive carbon) from external sources or to the release of As from within grey sand formations. We explore the latter scenario in this detailed hydrological and geochemical study along a 300 m transect of a shallow aquifer extending from a groundwater recharge area within a sandy channel bar to its discharge into a nearby stream. Within the 10-20 m depth range, groundwater ages along the transect determined by the 3H-3He method increase from <10 yr in the recharge area to a maximum of 40 yr towards the stream. Concentrations of groundwater As within the same grey sands increase from 10 to 100 to ∼500 µg/L along this transect. Evidence of reversible adsorption of As between the groundwater and sediment was obtained from a series of push-pull experiments, traditional batch adsorption experiments, and the accidental flooding of a shallow monitoring well. Assuming reversible adsorption and a distribution coefficient, Kd, of 0.15-1.5 L/kg inferred from these observations, a simple flushing model shows that the increase in As concentrations with depth and groundwater age at this site, and at other sites in the Bengal and Red River Basins, can be attributed to the evolution of the aquifer over 100-1000 years as aquifer sands are gradually flushed of their initial As content. A wide range of As concentrations can thus be maintained in groundwater with increases with depth governed by the history of flushing and local recharge rates, without external inputs of reactive carbon or As from other sources.

2.
Environ Sci Technol ; 49(18): 10815-24, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26192081

RESUMEN

In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.


Asunto(s)
Arsénico/análisis , Agua Subterránea/análisis , Bangladesh , Fluorescencia , Sedimentos Geológicos/análisis , Agua Subterránea/química , Sustancias Húmicas/análisis , Hierro/química , Espectroscopía de Resonancia Magnética , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
3.
Environ Sci Technol ; 45(7): 2648-54, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21405115

RESUMEN

Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1-2 mg kg(-1) As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg(-1) of 1 M phosphate-extractable As (24 h), >99% as As(V), and 0.8 g kg(-1) of 1.2 M HCl-leachable Fe (1 h at 80 °C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 µg L(-1) with lactate, 97% as As(III), and 2 µg L(-1) without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg(-1) in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 µg L(-1). These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh.


Asunto(s)
Arsénico/metabolismo , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Arsénico/análisis , Bangladesh , Agua Dulce/química , Sedimentos Geológicos/química , Hierro/metabolismo , Shewanella/metabolismo , Dióxido de Silicio/química , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis
4.
Appl Geochem ; 23(11): 3224-3235, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19884962

RESUMEN

Microbial Fe reduction is widely believed to be the primary mechanism of As release from aquifer sands in Bangladesh, but alternative explanations have been proposed. Long-term incubation studies using natural aquifer material are one way to address such divergent views. This study addresses two issues related to this approach: (1) the need for suitable abiotic controls and (2) the spatial variability of the composition of aquifer sands. Four sterilization techniques were examined using orange-colored Pleistocene sediment from Bangladesh and artificial groundwater over 8 months. Acetate (10 mM) was added to sacrificial vials before sterilization using either (1) 25 kGy of gamma irradiation, (2) three 1-h autoclave cycles, (3) a single addition of an antibiotic mixture at 1x or (4) 10x the typical dose, and (5) a 10 mM addition of azide. The effectiveness of sterilization was evaluated using two indicators of microbial Fe reduction, changes in diffuse spectral reflectance and leachable Fe(II)/Fe ratios, as well as changes in P-extractable As concentrations in the solid phase. A low dose of antibiotics was ineffective after 70 days, whereas autoclaving significantly altered groundwater composition. Gamma irradiation, a high dose of antibiotics, and azide were effective for the duration of the experiment.

5.
Front Microbiol ; 3: 82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470368

RESUMEN

Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As). This has globally important implications since As in drinking water affects the health of over 100 million people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic arsenic in groundwater can reach concentrations of more than 10 times the World Health Organization's limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across gradients in sediment texture and chemistry in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flow path at a range of depths between 1.5 and 15 m. We identified significant differences in bacterial community composition between locations in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C), manganese (Mn), and iron (Fe) concentrations. Deltaproteobacteria and Chloroflexi were found in higher proportions in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were in higher proportions in sandy sediments with lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance-reducers in the high C and metal sediments. It is well-documented that C, Mn, and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

6.
Environ Sci Technol ; 41(10): 3639-45, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17547190

RESUMEN

Elevated As concentrations in shallow groundwater pose a major health threat in Bangladesh and similarly affected countries, yet there is little consensus on the mechanism of As release to groundwater or how it might be influenced by human activities. In this study, the rate of As release was measured directly with incubations lasting 11 months, using sediment and groundwater collected simultaneously in Bangladesh and maintained under anaerobic conditions throughout the study. Groundwater and gray sediment were collected as diluted slurries between 5 and 38 m in depth, a range over which ambient groundwater As concentrations increased from 20 to 100 microg L(-1). Arsenic was released to groundwater in slurries from 5 and 12 m in depth at a relatively constant rate of 21 +/- 4 (2 sigma) and 23 +/- 6 microg As kg(-1) yr(-1), respectively. Amendment with a modest level of acetate increased the rate of As release only at 12 m (82 +/- 18 mirog kg(-1) yr(-1)). Although the groundwater As concentration was initially highest at 38 m depth, no release of As was observed. These results indicate that the spatial distribution of dissolved As in Bangladesh and local rates of release to groundwater are not necessarily linked. Iron release during the incubations did not occur concurrently with As release, providing further confirmation thatthe two processes are not directly coupled. Small periodic additions of oxygen suppressed the release of As from sediments at all three depths, which supports the notion that anoxia is a prerequisite for accumulation of As in Bangladesh groundwater.


Asunto(s)
Arsénico/análisis , Agua Dulce/análisis , Dióxido de Silicio/química , Suelo , Bangladesh , Hierro/análisis , Azufre/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA