Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(1): 25-42, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31705132

RESUMEN

Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Neuronas/citología , Membrana Nuclear/metabolismo , Replicación Viral/fisiología , Animales , Citocinesis , Endosomas/metabolismo , Exosomas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Neuronas/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas , Espastina/metabolismo
2.
EMBO J ; 42(17): e113105, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37409525

RESUMEN

Cells use noncanonical autophagy, also called conjugation of ATG8 to single membranes (CASM), to label damaged intracellular compartments with ubiquitin-like ATG8 family proteins in order to signal danger caused by pathogens or toxic compounds. CASM relies on E3 complexes to sense membrane damage, but so far, only the mechanism to activate ATG16L1-containing E3 complexes, associated with proton gradient loss, has been described. Here, we show that TECPR1-containing E3 complexes are key mediators of CASM in cells treated with a variety of pharmacological drugs, including clinically relevant nanoparticles, transfection reagents, antihistamines, lysosomotropic compounds, and detergents. Interestingly, TECPR1 retains E3 activity when ATG16L1 CASM activity is obstructed by the Salmonella Typhimurium pathogenicity factor SopF. Mechanistically, TECPR1 is recruited by damage-induced sphingomyelin (SM) exposure using two DysF domains, resulting in its activation and ATG8 lipidation. In vitro assays using purified human TECPR1-ATG5-ATG12 complex show direct activation of its E3 activity by SM, whereas SM has no effect on ATG16L1-ATG5-ATG12. We conclude that TECPR1 is a key activator of CASM downstream of SM exposure.


Asunto(s)
Esfingomielinas , Ubiquitinas , Humanos , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas de la Membrana/metabolismo
3.
EMBO J ; 41(24): e112677, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36408828

RESUMEN

Lysosome integrity is essential for cell viability, and lesions in lysosome membranes are repaired by the ESCRT machinery. Here, we describe an additional mechanism for lysosome repair that is activated independently of ESCRT recruitment. Lipidomic analyses showed increases in lysosomal phosphatidylserine and cholesterol after damage. Electron microscopy demonstrated that lysosomal membrane damage is rapidly followed by the formation of contacts with the endoplasmic reticulum (ER), which depends on the ER proteins VAPA/B. The cholesterol-binding protein ORP1L was recruited to damaged lysosomes, accompanied by cholesterol accumulation by a mechanism that required VAP-ORP1L interactions. The PtdIns 4-kinase PI4K2A rapidly produced PtdIns4P on lysosomes upon damage, and knockout of PI4K2A inhibited damage-induced accumulation of ORP1L and cholesterol and led to the failure of lysosomal membrane repair. The cholesterol-PtdIns4P transporter OSBP was also recruited upon damage, and its depletion caused lysosomal accumulation of PtdIns4P and resulted in cell death. We conclude that ER contacts are activated on damaged lysosomes in parallel to ESCRTs to provide lipids for membrane repair, and that PtdIns4P generation and removal are central in this response.


Asunto(s)
Receptores de Esteroides , Receptores de Esteroides/metabolismo , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Colesterol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
4.
EMBO J ; 40(7): e106922, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33644904

RESUMEN

The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell's organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Animales , Permeabilidad de la Membrana Celular , Humanos , Biogénesis de Organelos
5.
EMBO J ; 39(18): e106162, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32803793

RESUMEN

Mutations in several genes encoding for lysosomal proteins are involved in Parkinson's disease (PD). In this issue, Herbst et al (2020) show that PD-related leucine-rich repeat kinase 2 (LRRK2) is activated in response to pathogen or membranolytic drug-induced damage of phagolysosomes and lysosomes in macrophages, and regulates endolysosomal homeostasis by controlling the balance between membrane repair and degradation.


Asunto(s)
Lisosomas , Enfermedad de Parkinson , Endosomas , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Macrófagos , Mutación , Enfermedad de Parkinson/genética
6.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30314966

RESUMEN

Although lysosomes perform a number of essential cellular functions, damaged lysosomes represent a potential hazard to the cell. Such lysosomes are therefore engulfed by autophagic membranes in the process known as lysophagy, which is initiated by recognition of luminal glycoprotein domains by cytosolic lectins such as Galectin-3. Here, we show that, under various conditions that cause injury to the lysosome membrane, components of the endosomal sorting complex required for transport (ESCRT)-I, ESCRT-II, and ESCRT-III are recruited. This recruitment occurs before that of Galectin-3 and the lysophagy machinery. Subunits of the ESCRT-III complex show a particularly prominent recruitment, which depends on the ESCRT-I component TSG101 and the TSG101- and ESCRT-III-binding protein ALIX Interference with ESCRT recruitment abolishes lysosome repair and causes otherwise reversible lysosome damage to become cell lethal. Vacuoles containing the intracellular pathogen Coxiella burnetii show reversible ESCRT recruitment, and interference with this recruitment reduces intravacuolar bacterial replication. We conclude that the cell is equipped with an endogenous mechanism for lysosome repair which protects against lysosomal damage-induced cell death but which also provides a potential advantage for intracellular pathogens.


Asunto(s)
Coxiella burnetii/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Fiebre Q/metabolismo , Proteínas Sanguíneas , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Galectina 3/genética , Galectina 3/metabolismo , Galectinas , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/patología , Fiebre Q/genética , Fiebre Q/patología
7.
Proc Natl Acad Sci U S A ; 121(3): e2321181121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190545
8.
Cytopathology ; 33(1): 127-131, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34590371

RESUMEN

Pheochromocytomas and sympathetic paragangliomas are rare tumours arising from chromaffin cells, producing catecholamines in various amounts. Fatal hypertensive episodes may occur perioperatively, which are preventable by alpha adrenergic receptor blockers. The perioperative mortality rate of diagnosed versus undiagnosed catecholamine-producing tumours is significant, considering that only a minority of tumours develop metastasis. Herein we describe a case of a primary adrenal pheochromocytoma referred to as a pancreatic tumour, successfully diagnosed by endoscopic ultrasound-guided fine needle aspiration biopsy, with a distinct morphology (prominent nuclear anisonucleosis, intranuclear pseudoinclusions, and multinucleation) and immunohistochemical signature.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias Pancreáticas , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Factor de Transcripción GATA3 , Humanos , Neoplasias Pancreáticas/patología , Feocromocitoma/diagnóstico
9.
Glia ; 69(9): 2111-2132, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33887067

RESUMEN

Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.


Asunto(s)
Receptor PAR-1 , Traumatismos de la Médula Espinal , Animales , Astrocitos/metabolismo , Femenino , Ratones , Neuronas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo
10.
Neurobiol Dis ; 152: 105294, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549720

RESUMEN

Despite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased. Notably, PAR1 differentially regulated HMGCS1, a gene encoding a rate-limiting enzyme in cholesterol production, across the neuronal and astroglial compartments of the intact versus injured spinal cord. Pharmacologic inhibition of cortical neuron PAR1 using vorapaxar in vitro also decreased PTEN and promoted neurite outgrowth in a cholesterol dependent manner, including that driven by suboptimal brain derived neurotrophic factor (BDNF). Pharmacologic inhibition of PAR1 also augmented BDNF-driven HMGCS1 and cholesterol production by murine cortical neurons and by human SH-SY5Y and iPSC-derived neurons. The link between PAR1, cholesterol and BDNF was further highlighted by demonstrating that the deleterious effects of PAR1 over-activation are overcome by supplementing cultures with BDNF, cholesterol or by blocking an inhibitor of adenylate cyclase, Gαi. These findings document PAR1-linked neurotrophic coupling mechanisms that regulate neuronal cholesterol metabolism as an important component of the machinery regulating CNS repair and point to new strategies to enhance neural resiliency after injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Colesterol/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Receptor PAR-1/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyección Neuronal/fisiología , Recuperación de la Función/fisiología
11.
J Biol Chem ; 293(15): 5544-5555, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29414770

RESUMEN

S-Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S-adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , S-Adenosilhomocisteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosilhomocisteinasa/genética , Ácidos Grasos/genética , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Modelos Biológicos , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Biol Chem ; 399(9): 1041-1052, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-29604205

RESUMEN

Kallikrein-related peptidase 6 (Klk6) is the most abundant serine proteinase in the adult central nervous system (CNS), yet we know little regarding its physiological roles or mechanisms of action. Levels of Klk6 in the extracellular environment are dynamically regulated in CNS injury and disease positioning this secreted enzyme to affect cell behavior by potential receptor dependent and independent mechanisms. Here we show that recombinant Klk6 evokes increases in intracellular Ca2+ in primary astrocyte monolayer cultures through activation of proteinase activated receptor 1 (PAR1). In addition, Klk6 promoted a condensation of astrocyte cortical actin leading to an elongated stellate shape and multicellular aggregation in a manner that was dependent on the presence of either PAR1 or PAR2. Klk6-evoked changes in astrocyte shape were accompanied by translocation of ß-catenin from the plasma membrane to the cytoplasm. These data are exciting because they demonstrate that Klk6 can influence astrocyte plasticity through receptor-dependent mechanisms. Furthermore, this study expands our understanding of the mechanisms by which kallikreins can contribute to neural homeostasis and remodeling and point to both PAR1 and PAR2 as new therapeutic targets to modulate astrocyte form and function.


Asunto(s)
Astrocitos/metabolismo , Calicreínas/metabolismo , Receptores Proteinasa-Activados/metabolismo , Animales , Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Proteinasa-Activados/deficiencia
13.
Biochem Soc Trans ; 46(4): 773-778, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29903934

RESUMEN

The multisubunit endosomal sorting complex required for transport (ESCRT) machinery is a key regulator of cellular membrane dynamics. Initially characterized in the budding yeast Saccharomyces cerevisiae for its involvement in cargo sorting to the vacuole, the yeast lysosome, this protein complex has emerged over the past decade as a driver for diverse membrane remodeling processes. Its pleiotropic functional connection is mirrored in numerous cellular processes, such as cytokinetic abscission during the final step of cell division, nuclear pore quality control, nuclear envelope sealing and repair, plasma membrane repair, vesicle shedding from the plasma membrane, viral budding, and axonal pruning. Common to all the processes regulated by the ESCRT machinery is their assembly on the cytosolic side of the respective membrane to stabilize concave membranes, budding, and scission of narrow membrane necks away from the cytosol. Thus, this machinery has evolved to perform many functions in membrane dynamics, and given its importance, it is not surprising that the dysfunctional ESCRT machinery has been implicated in several diseases. In this mini-review, we summarize the role of ESCRT proteins in membrane deformation specifically during membrane sealing and repair.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Citosol/metabolismo , Humanos , Transporte de Proteínas
14.
J Biol Chem ; 291(22): 11865-75, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27036938

RESUMEN

Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.


Asunto(s)
Evolución Biológica , Etanol/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Monoacilglicerol Lipasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Células Cultivadas , Cromatografía en Capa Delgada , Cromatografía de Gases y Espectrometría de Masas , Hepatocitos/citología , Humanos , Inactivación Metabólica , Ratones , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
Glia ; 65(12): 2070-2086, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28921694

RESUMEN

Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Vaina de Mielina/fisiología , Receptor PAR-2/metabolismo , Traumatismos de la Médula Espinal , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Proteínas Relacionadas con la Autofagia , Factor Neurotrófico Derivado del Encéfalo/farmacología , AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Oligodendroglía/metabolismo , Receptor PAR-2/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
16.
Hum Mutat ; 37(10): 1097-105, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397503

RESUMEN

Tyrosinemia type I (TYRSN1, TYR I) is caused by fumarylacetoacetate hydrolase (FAH) deficiency and affects approximately one in 100,000 individuals worldwide. Pathogenic variants in FAH cause TYRSN1, which induces cirrhosis and can progress to hepatocellular carcinoma (HCC). TYRSN1 is characterized by the production of a pathognomonic metabolite, succinylacetone (SUAC) and is included in the Recommended Uniform Screening Panel for newborns. Treatment intervention is effective if initiated within the first month of life. Here, we describe a family with three affected children who developed HCC secondary to idiopathic hepatosplenomegaly and cirrhosis during infancy. Whole exome sequencing revealed a novel homozygous missense variant in FAH (Chr15(GRCh38):g.80162305A>G; NM_000137.2:c.424A > G; NP_000128.1:p.R142G). This novel variant involves the catalytic pocket of the enzyme, but does not result in increased SUAC or tyrosine, making the diagnosis of TYRSN1 problematic. Testing this novel variant using a rapid, in vivo somatic mouse model showed that this variant could not rescue FAH deficiency. In this case of atypical TYRSN1, we show how reliance on SUAC as a primary diagnostic test can be misleading in some patients with this disease. Augmentation of current screening for TYRSN1 with targeted sequencing of FAH is warranted in cases suggestive of the disorder.


Asunto(s)
Carcinoma Hepatocelular/genética , Hidrolasas/genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Mutación Missense , Tirosinemias/diagnóstico , Adolescente , Animales , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/patología , Dominio Catalítico , Línea Celular Tumoral , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Heptanoatos/metabolismo , Humanos , Hidrolasas/química , Lactante , Cirrosis Hepática/complicaciones , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/patología , Masculino , Ratones , Linaje , Análisis de Secuencia de ADN , Tirosina/metabolismo , Tirosinemias/complicaciones , Tirosinemias/genética
17.
Biochim Biophys Acta ; 1851(11): 1450-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26275961

RESUMEN

Yeast Fld1 and Ldb16 resemble mammalian seipin, implicated in neutral lipid storage. Both proteins form a complex at the endoplasmic reticulum-lipid droplet (LD) interface. Malfunction of this complex either leads to LD clustering or to the generation of supersized LD (SLD) in close vicinity to the nuclear envelope, in response to altered phospholipid (PL) composition. We show that similar to mutants lacking Fld1, deletion of LDB16 leads to abnormal proliferation of a subdomain of the nuclear envelope, which is tightly associated with clustered LD. The human lipin-1 ortholog, the PAH1 encoded phosphatidic acid (PA) phosphatase, and its activator Nem1 are highly enriched at this site. The specific accumulation of PA-binding marker proteins indicates a local enrichment of PA in the fld1 and ldb16 mutants. Furthermore, we demonstrate that clustered LD in fld1 or ldb16 mutants are transformed to SLD if phosphatidylcholine synthesis is compromised by additional deletion of the phosphatidylethanolamine methyltransferase, Cho2. Notably, treatment of wild-type cells with oleate induced a similar LD clustering and nuclear membrane proliferation phenotype as observed in fld1 and ldb16 mutants. These data suggest that the Fld1-Ldb16 complex affects PA homeostasis at an LD-forming subdomain of the nuclear envelope. Lack of Fld1-Ldb16 leads to locally elevated PA levels that induce an abnormal proliferation of nER membrane structures and the clustering of associated LD. We suggest that the formation of SLD is a consequence of locally altered PL metabolism at this site.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica , Proteínas Mitocondriales/genética , Membrana Nuclear/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Subunidades gamma de la Proteína de Unión al GTP/deficiencia , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Metabolismo de los Lípidos/efectos de los fármacos , Proteínas Mitocondriales/deficiencia , Mutación , Membrana Nuclear/efectos de los fármacos , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Oléico/farmacología , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
18.
Neurobiol Dis ; 93: 226-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27145117

RESUMEN

The deregulation of serine protease activity is a common feature of neurological injury, but little is known regarding their mechanisms of action or whether they can be targeted to facilitate repair. In this study we demonstrate that the thrombin receptor (Protease Activated Receptor 1, (PAR1)) serves as a critical translator of the spinal cord injury (SCI) proteolytic microenvironment into a cascade of pro-inflammatory events that contribute to astrogliosis and functional decline. PAR1 knockout mice displayed improved locomotor recovery after SCI and reduced signatures of inflammation and astrogliosis, including expression of glial fibrillary acidic protein (GFAP), vimentin, and STAT3 signaling. SCI-associated elevations in pro-inflammatory cytokines such as IL-1ß and IL-6 were also reduced in PAR1-/- mice and co-ordinate improvements in tissue sparing and preservation of NeuN-positive ventral horn neurons, and PKCγ corticospinal axons, were observed. PAR1 and its agonist's thrombin and neurosin were expressed by perilesional astrocytes and each agonist increased the production of IL-6 and STAT3 signaling in primary astrocyte cultures in a PAR1-dependent manner. In turn, IL-6-stimulated astrocytes increased expression of PAR1, thrombin, and neurosin, pointing to a model in which PAR1 activation contributes to increased astrogliosis by feedforward- and feedback-signaling dynamics. Collectively, these findings identify the thrombin receptor as a key mediator of inflammation and astrogliosis in the aftermath of SCI that can be targeted to reduce neurodegeneration and improve neurobehavioral recovery.


Asunto(s)
Gliosis/patología , Receptores de Trombina/metabolismo , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Astrocitos/metabolismo , Axones/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/fisiopatología
19.
Glia ; 63(5): 846-59, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25628003

RESUMEN

Hemorrhagic white matter injuries in the perinatal period are a growing cause of cerebral palsy yet no neuroprotective strategies exist to prevent the devastating motor and cognitive deficits that ensue. We demonstrate that the thrombin receptor (protease-activated receptor 1, PAR1) exhibits peak expression levels in the spinal cord at term and is a critical regulator of the myelination continuum from initiation to the final levels achieved. Specifically, PAR1 gene deletion resulted in earlier onset of spinal cord myelination, including substantially more Olig2-positive oligodendrocytes, more myelinated axons, and higher proteolipid protein (PLP) levels at birth. In vitro, the highest levels of PAR1 were observed in oligodendrocyte progenitor cells (OPCs), being reduced with differentiation. In parallel, the expression of PLP and myelin basic protein (MBP), in addition to Olig2, were all significantly higher in cultures of PAR1-/- oligodendroglia. Moreover, application of a small molecule inhibitor of PAR1 (SCH79797) to OPCs in vitro increased PLP and MBP expression. Enhancements in myelination associated with PAR1 genetic deletion were also observed in adulthood as evidenced by higher amounts of MBP and thickened myelin sheaths across large, medium, and small diameter axons. Enriched spinal cord myelination in PAR1-/- mice was coupled to increases in extracellular-signal-regulated kinase 1/2 and AKT signaling developmentally. Nocturnal ambulation and rearing activity were also elevated in PAR1-/- mice. These studies identify the thrombin receptor as a powerful extracellular regulatory switch that could be readily targeted to improve myelin production in the face of white matter injury and disease.


Asunto(s)
Líquido Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Receptor PAR-1/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Proteínas de la Mielina/genética , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/ultraestructura , Neuroglía/metabolismo , Receptor PAR-1/genética , Células Madre/metabolismo
20.
Neurobiol Dis ; 83: 75-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26316358

RESUMEN

Inflammatory-astrogliosis exacerbates damage in the injured spinal cord and limits repair. Here we identify Protease Activated Receptor 2 (PAR2) as an essential regulator of these events with mice lacking the PAR2 gene showing greater improvements in motor coordination and strength after compression-spinal cord injury (SCI) compared to wild type littermates. Molecular profiling of the injury epicenter, and spinal segments above and below, demonstrated that mice lacking PAR2 had significantly attenuated elevations in key hallmarks of astrogliosis (glial fibrillary acidic protein (GFAP), vimentin and neurocan) and in expression of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor (TNF) and interleukin-1 beta (IL-1ß)). SCI in PAR2-/- mice was also accompanied by improved preservation of protein kinase C gamma (PKCγ)-immunopositive corticospinal axons and reductions in GFAP-immunoreactivity, expression of the pro-apoptotic marker BCL2-interacting mediator of cell death (BIM), and in signal transducer and activator of transcription 3 (STAT3). The potential mechanistic link between PAR2, STAT3 and astrogliosis was further investigated in primary astrocytes to reveal that the SCI-related serine protease, neurosin (kallikrein 6) promotes IL-6 secretion in a PAR2 and STAT3-dependent manner. Data point to a signaling circuit in primary astrocytes in which neurosin signaling at PAR2 promotes IL-6 secretion and canonical STAT3 signaling. IL-6 promotes expression of GFAP, vimentin, additional IL-6 and robust increases in both neurosin and PAR2, thereby driving the PAR2-signaling circuit forward. Given the significant reductions in astrogliosis and inflammation as well as superior neuromotor recovery observed in PAR2 knockout mice after SCI, we suggest that this receptor and its agonists represent new drug targets to foster neuromotor recovery.


Asunto(s)
Astrocitos/metabolismo , Calicreínas/metabolismo , Mielitis/metabolismo , Receptor PAR-2/metabolismo , Recuperación de la Función , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Animales , Apoptosis , Astrocitos/patología , Axones/metabolismo , Axones/patología , Femenino , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Mielitis/etiología , Mielitis/patología , Proteína Quinasa C/metabolismo , Tractos Piramidales/metabolismo , Tractos Piramidales/patología , Receptor PAR-2/genética , Factor de Transcripción STAT3/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA