Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 13(9): 566-78, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22850819

RESUMEN

During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Autofagia , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos
2.
Mol Cell ; 64(4): 760-773, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818145

RESUMEN

Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Transporte Iónico , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
Mol Cell ; 53(5): 726-37, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560927

RESUMEN

Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Aequorina/química , Calcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerización , Disulfuros , Electrofisiología/métodos , Silenciador del Gen , Células HeLa , Humanos , Inmunohistoquímica , Membrana Dobles de Lípidos/química , Mitocondrias/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal
4.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269658

RESUMEN

Alternative splicing, the process by which exons within a pre-mRNA transcript are differentially joined or skipped, is crucial in skeletal muscle since it is required both during myogenesis and in post-natal life to reprogram the transcripts of contractile proteins, metabolic enzymes, and transcription factors in functionally distinct muscle fiber types. The importance of such events is underlined by the numerosity of pathological conditions caused by alternative splicing aberrations. Importantly, many skeletal muscle Ca2+ homeostasis genes are also regulated by alternative splicing mechanisms, among which is the Mitochondrial Ca2+ Uniporter (MCU) genuine activator MICU1 which regulates MCU opening upon cell stimulation. We have previously shown that murine skeletal muscle MICU1 is subjected to alternative splicing, thereby generating a splice variant-which was named MICU1.1-that confers unique properties to the mitochondrial Ca2+ uptake and ensuring sufficient ATP production for muscle contraction. Here we extended the analysis of MICU1 alternative splicing to human tissues, finding two additional splicing variants that were characterized by their ability to regulate mitochondrial Ca2+ uptake. Furthermore, we found that MICU1 alternative splicing is induced during myogenesis by the splicing factor RBFOX2. These results highlight the complexity of the alternative splicing mechanisms in skeletal muscle and the regulation of mitochondrial Ca2+ among tissues.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de Transporte de Catión , Proteínas de Transporte de Membrana Mitocondrial , Factores de Empalme de ARN , Proteínas Represoras , Calcio/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Desarrollo de Músculos/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
Trends Biochem Sci ; 41(12): 1035-1049, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27692849

RESUMEN

In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/fisiología , Lisosomas/metabolismo , Mitocondrias/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Homeostasis , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Músculo Estriado/metabolismo , Músculo Estriado/ultraestructura , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
6.
J Pineal Res ; 66(2): e12484, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29480948

RESUMEN

Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.


Asunto(s)
Genes Protozoarios/efectos de los fármacos , Melatonina/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/fisiología , Plasmodium falciparum/metabolismo , Dinaminas/metabolismo , Eritrocitos/parasitología , Técnicas de Inactivación de Genes , Proteínas Fluorescentes Verdes , Humanos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Plasmodium falciparum/efectos de los fármacos , Proteínas Quinasas/metabolismo
7.
Pflugers Arch ; 470(8): 1165-1179, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29541860

RESUMEN

Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos , Mitocondrias/fisiología , Modelos Animales , Intercambiador de Sodio-Calcio/metabolismo
8.
Plant Physiol ; 173(2): 1355-1370, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28031475

RESUMEN

Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mutación , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
9.
Biochim Biophys Acta ; 1863(10): 2457-64, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26968367

RESUMEN

Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Canales de Calcio/química , Canales de Calcio/deficiencia , Señalización del Calcio , Proteínas de Unión al Calcio/deficiencia , Modelos Animales de Enfermedad , Humanos , Transporte Iónico/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Membranas Mitocondriales/metabolismo , Proteínas Musculares/química , Proteínas Musculares/fisiología , Especificidad de Órganos , Conformación Proteica
10.
Am J Physiol Endocrinol Metab ; 313(6): E641-E650, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28790027

RESUMEN

Intracellular calcium influences an array of pathways and affects cellular processes. With the rapidly progressing research investigating the molecular identity and the physiological roles of the mitochondrial calcium uniporter (MCU) complex, we now have the tools to understand the functions of mitochondrial Ca2+ in the regulation of pathophysiological processes. Herein, we describe the role of key MCU complex components in insulin resistance in mouse and human adipose tissue. Adipose tissue gene expression was analyzed from several models of obese and diabetic rodents and in 72 patients with obesity as well as in vitro insulin-resistant adipocytes. Genetic manipulation of MCU activity in 3T3-L1 adipocytes allowed the investigation of the role of mitochondrial calcium uptake. In insulin-resistant adipocytes, mitochondrial calcium uptake increased and several MCU components were upregulated. Similar results were observed in mouse and human visceral adipose tissue (VAT) during the progression of obesity and diabetes. Intriguingly, subcutaneous adipose tissue (SAT) was spared from overt MCU fluctuations. Furthermore, MCU expression returned to physiological levels in VAT of patients after weight loss by bariatric surgery. Genetic manipulation of mitochondrial calcium uptake in 3T3-L1 adipocytes demonstrated that changes in mitochondrial calcium concentration ([Ca2+]mt) can affect mitochondrial metabolism, including oxidative enzyme activity, mitochondrial respiration, membrane potential, and reactive oxygen species formation. Finally, our data suggest a strong relationship between [Ca2+]mt and the release of IL-6 and TNFα in adipocytes. Altered mitochondrial calcium flux in fat cells may play a role in obesity and diabetes and may be associated with the differential metabolic profiles of VAT and SAT.


Asunto(s)
Adipocitos/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias/metabolismo , Células 3T3-L1 , Adulto , Animales , Estudios de Casos y Controles , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Estado Prediabético/genética , Estado Prediabético/metabolismo , Estado Prediabético/patología , Grasa Subcutánea/metabolismo , Grasa Subcutánea/patología
11.
EMBO J ; 32(17): 2362-76, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23900286

RESUMEN

Mitochondrial calcium uniporter (MCU) channel is responsible for Ruthenium Red-sensitive mitochondrial calcium uptake. Here, we demonstrate MCU oligomerization by immunoprecipitation and Förster resonance energy transfer (FRET) and characterize a novel protein (MCUb) with two predicted transmembrane domains, 50% sequence similarity and a different expression profile from MCU. Based on computational modelling, MCUb includes critical amino-acid substitutions in the pore region and indeed MCUb does not form a calcium-permeable channel in planar lipid bilayers. In HeLa cells, MCUb is inserted into the oligomer and exerts a dominant-negative effect, reducing the [Ca(2+)]mt increases evoked by agonist stimulation. Accordingly, in vitro co-expression of MCUb with MCU drastically reduces the probability of observing channel activity in planar lipid bilayer experiments. These data unveil the structural complexity of MCU and demonstrate a novel regulatory mechanism, based on the inclusion of dominant-negative subunits in a multimeric channel, that underlies the fine control of the physiologically and pathologically relevant process of mitochondrial calcium homeostasis.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/genética , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Homeostasis , Humanos , Membrana Dobles de Lípidos , Potencial de la Membrana Mitocondrial , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína
12.
Nature ; 476(7360): 336-40, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685888

RESUMEN

Mitochondrial Ca(2+) homeostasis has a key role in the regulation of aerobic metabolism and cell survival, but the molecular identity of the Ca(2+) channel, the mitochondrial calcium uniporter, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator, is present in organisms in which mitochondrial Ca(2+) uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca(2+) uptake. MCU overexpression doubled the matrix Ca(2+) concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca(2+) concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca(2+) uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Permeabilidad de la Membrana Celular , Secuencia Conservada , Silenciador del Gen , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Transporte Iónico , Membrana Dobles de Lípidos/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Datos de Secuencia Molecular , Peso Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
J Biol Chem ; 288(15): 10750-8, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23400777

RESUMEN

The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.


Asunto(s)
Apoptosis/fisiología , Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Canales de Calcio/genética , Humanos , Mitocondrias/genética , Necrosis
14.
Cell Calcium ; 121: 102907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788256

RESUMEN

Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Mitocondrias , Especificidad de Órganos , Humanos , Canales de Calcio/metabolismo , Animales , Mitocondrias/metabolismo , Calcio/metabolismo
15.
Front Mol Biosci ; 10: 1336416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148906

RESUMEN

Ca2+ ions serve as pleiotropic second messengers in the cell, regulating several cellular processes. Mitochondria play a fundamental role in Ca2+ homeostasis since mitochondrial Ca2+ (mitCa2+) is a key regulator of oxidative metabolism and cell death. MitCa2+ uptake is mediated by the mitochondrial Ca2+ uniporter complex (MCUc) localized in the inner mitochondrial membrane (IMM). MitCa2+ uptake stimulates the activity of three key enzymes of the Krebs cycle, thereby modulating ATP production and promoting oxidative metabolism. As Paracelsus stated, "Dosis sola facit venenum,"in pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP), enabling the release of apoptotic factors and ultimately leading to cell death. Excessive mitCa2+ accumulation is also associated with a pathological increase of reactive oxygen species (ROS). In this article, we review the precise regulation and the effectors of mitCa2+ in physiopathological processes.

16.
Cell Calcium ; 112: 102720, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37001308

RESUMEN

Mitochondrial Ca2+ (mitCa2+) uptake controls both intraorganellar and cytosolic functions. Within the organelle, [Ca2+] increases regulate the activity of tricarboxylic acid (TCA) cycle enzymes, thus sustaining oxidative metabolism and ATP production. Reactive oxygen species (ROS) are also generated as side products of oxygen consumption. At the same time, mitochondria act as buffers of cytosolic Ca2+ (cytCa2+) increases, thus regulating Ca2+-dependent cellular processes. In pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic cofactors. MitCa2+ uptake occurs in response of local [Ca2+] increases in sites of proximity between the endoplasmic reticulum (ER) and the mitochondria and is mediated by the mitochondrial Ca2+ uniporter (MCU), a highly selective channel of the inner mitochondrial membrane (IMM). Both channel and regulatory subunits form the MCU complex (MCUC). Cryogenic electron microscopy (Cryo-EM) and crystal structures revealed the correct assembly of MCUC and the function of critical residues for the regulation of Ca2+ conductance.


Asunto(s)
Calcio , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Canales de Calcio/metabolismo
17.
Bio Protoc ; 13(1): e4587, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36789082

RESUMEN

Skeletal muscle, one of the most abundant tissue in the body, is a highly regenerative tissue. Indeed, compared to other tissues that are not able to regenerate after injury, skeletal muscle can fully regenerate upon mechanically, chemically, and infection-induced trauma. Several injury models have been developed to thoroughly investigate the physiological mechanisms regulating skeletal muscle regeneration. This protocol describes how to induce muscle regeneration by taking advantage of a cardiotoxin (CTX)-induced muscle injury model. The overall steps include CTX injection of tibialis anterior (TA) muscles of BL6N mice, collection of regenerating muscles at different time points after CTX injury, and histological characterization of regenerating muscles. Our protocol, compared with others such as those for freeze-induced injury models, avoids laceration or infections of the muscles since it involves neither surgery nor suture. In addition, our protocol is highly reproducible, since it causes homogenous myonecrosis of the whole muscle, and further reduces animal pain and stress. Graphical abstract.

18.
Nat Commun ; 14(1): 602, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746942

RESUMEN

Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.


Asunto(s)
Andrógenos , Atrofia Bulboespinal Ligada al X , Ratones , Animales , Andrógenos/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Calcio/metabolismo , Músculo Esquelético/metabolismo , Receptores Androgénicos/metabolismo , Mitocondrias/metabolismo , Respiración , Modelos Animales de Enfermedad
19.
Biochim Biophys Acta ; 1813(1): 260-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20950653

RESUMEN

Production of reactive oxygen species (ROS) is a tightly regulated process, and increased levels of ROS within mitochondria are the principal trigger not only for mitochondrial dysfunctions but, more in general, for the diseases associated with aging, thus representing a powerful signaling molecules. One of the key regulators of ROS production, mitochondrial dysfunction, and aging is the 66-kDa isoform of the growth factor adapter shc (p66(shc)) that is activated by stress and generates ROS within the mitochondria, driving cells to apoptosis. Accordingly, p66(shc) knockout animals are one of the best characterized genetic model of longevity. On the other hand, caloric restriction is the only non-genetic mechanism that is shown to increase life span. Several studies have revealed a complex network of signaling pathways modulated by nutrients, such as IGF-1, TOR, sirtuins, AMP kinase, and PGC-1α that are connected and converge to inhibit oxidative stresses within the mitochondria. Animal models in which components of these signaling pathways are induced or silenced present a general phenotype characterized by the deceleration of the aging process. This review will summarize the main findings in the process that link mitochondria to longevity and the connections between the different signaling molecules involved in this intriguing relationship.


Asunto(s)
Longevidad , Mitocondrias/fisiología , Transducción de Señal , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo
20.
Cell Calcium ; 93: 102322, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264708

RESUMEN

The role of mitochondria in regulating cellular Ca2+ homeostasis is crucial for the understanding of different cellular functions in physiological and pathological conditions. Nevertheless, the study of this aspect was severely limited by the lack of the molecular identity of the proteins responsible for mitochondrial Ca2+ uptake. In 2011, the discovery of the gene encoding for the Mitochondrial Calcium Uniporter (MCU), the selective channel responsible for mitochondrial Ca2+ uptake, gave rise to an explosion of studies aimed to characterize the composition, the regulation of the channel and its pathophysiological roles. Here, we summarize the recent discoveries on the molecular structure and composition of the MCU complex by providing new insights into the mechanisms that regulate MCU channel activity.


Asunto(s)
Canales de Calcio/metabolismo , Animales , Canales de Calcio/química , Humanos , Modelos Biológicos , Especificidad de Órganos , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA