Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Inorg Chem ; 63(14): 6335-6345, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38516707

RESUMEN

Synthesis and characterization of new P(III) and P(V) bis(azido)phosphines/phosphoranes supported by an N,N'-bis(2,6-diisopropylphenyl) imidazolin-2-iminato (IPrN) ligand and their reactivity with various secondary and tertiary phosphines result in the formation of chiral and/or asymmetric mono(phosphinimino)azidophosphines via the Staudinger reaction. The reaction of IPrNP(N3)2 (2) or IPrNP(S)(N3)2 (4S) with an excess of tertiary phosphine resulted in the chemoselective formation of IPrNP(N3)(NPMe3) (7) or IPrNP(S)N3(NPR3) (5R), respectively. The chemoselective Staudinger reactivity was also observed in reactions using a secondary phosphine (HPCy2) to produce IPrNP(S)N3[NP(H)Cy2] (6a), which exists in equilibrium with a tautomeric IPrNP(S)N3[N(H)PCy2] form (6b), as confirmed by 31P-31P nuclear Overhauser effect spectroscopy (NOESY). Density functional theory (DFT) calculations point to a combination of energetically unfavorable lowest unoccupied molecular orbitals (LUMOs) and the accumulation of increasing negative charge at the terminal azido-nitrogen upon a single azide-to-phosphinimine conversion that gave rise to the observed chemoselectivity.

2.
Phys Chem Chem Phys ; 26(25): 17561-17568, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869486

RESUMEN

Chromium(III)-doped zinc gallate (CZGO) is one of the representative persistent luminescent phosphors emitting in the near-infrared (NIR) region. The emission wavelength it covers falls in the tissue-transparent window, making CZGO a promising optical probe for various biomedical applications. The PersL mechanism dictates that such a phenomenon is only profound in large crystals, so the preparation of CZGO with sizes small enough for biological applications while maintaining its luminescence remains a challenging task. Recent attempts to use mesoporous silica nanoparticles (MSN) as a template for growing nanosized CZGO have been successful. MSN is also a well-studied drug carrier, and incorporating CZGO in MSN further expands its potential in imaging-guided therapeutics. Despite the interest, it is unclear of how the addition of MSN would affect the luminescence properties of CZGO. In this work, we observed that forming a CZGO@MSN nanocomposite could enhance the luminescence intensity and extend the PersL lifetime of CZGO. X-ray absorption fine structure (XAFS) analysis was conducted to investigate the local structure of Zn2+, and an interaction between Zn2+ in CZGO and the MSN matrix was identified.

3.
Angew Chem Int Ed Engl ; : e202414534, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39406686

RESUMEN

Emissive organic materials are predominantly fluorescent and there is significant interest in realizing and understanding examples that defy this paradigm and exhibit phosphorescence under ambient conditions. Organic room temperature phosphorescence (ORTP) offers the long-lived excited states and bathochromically-shifted emission maxima of phosphorescence without the use of potentially toxic and expensive transition metals. Most ORTP materials rely on well-studied structural motifs that include aryl carbonyls, sulfones, and heavy main group elements. We report the unexpected ORTP of a series of heavy atom-free BN-substituted xanthene derivatives. The creation of heteroatom-rich scaffolds, combined with stabilizing C-H···F interactions in the solid-state, resulted in oxygen-tolerant heavy atom-free organic phosphorescence without relying on the use of cryogenic temperatures, polymer matrices, or host-guest interactions. The observation of ORTP in these simple systems sets a blueprint for the further development of heavy atom-free organic phosphors.

4.
Inorg Chem ; 62(37): 15104-15109, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37678149

RESUMEN

Multicomponent reactions of primary phosphines (R-PH2), diimines (R'-N═C(H)-R-(H)C═N-R'), and chalcogens (O2, S8) generate poly(α-aminophosphine chalcogenide)s (4-7) through step-growth polymerization. Characterization of the linear polymers using 31P{1H} diffusion-ordered NMR spectroscopy (DOSY) experiments aided in determining the molecular weight (Mw) of the material. Subjecting the polyphosphine oxide or sulfide to reducing conditions in the presence of a Lewis acid resulted in complete depolymerization of the polymers, quantitatively releasing the 1° phosphine and diimine (2) starting materials, with concomitant reduction of diimine to diamine (9).

5.
Chemistry ; 28(52): e202201565, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35882523

RESUMEN

Reactivity of primary phosphines with two stoichiometric equivalents of imine results in the formation of bis-α-aminophosphines (2 a-e), which can be subsequently oxidized in the presence of S8 or H2 O2 to generate air stable bis-α-aminophosphine sulfides (2 b-m(S/O)). To elucidate the mechanism of this three-component reaction, Hammett analysis, kinetic isotope effect (KIE), and trapping experiments were performed. Ultimately a P(V)-P(III) tautomerization is invoked, followed by nucleophilic attack by the P(III) species to generate the desired products.

6.
Inorg Chem ; 61(46): 18719-18728, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36355443

RESUMEN

While they are often encountered as reaction intermediates, phosphenium cations are not commonly incorporated into π-conjugated systems. We report the synthesis and characterization of donor-stabilized phosphenium cations supported by pyridylhydrazonide ligands. The preparation of these cations relies on precise control of ligand E-Z isomerism. The heterocycles were treated with a variety of transition metals, with [Rh(COD)Cl]2 yielding the only well-defined organometallic products. The optoelectronic properties of the phosphenium heterocycles and their transition-metal complexes were examined using UV-vis absorption spectroscopy, cyclic voltammetry, and modeling by density functional theory (DFT). Computations support the description of these compounds as phosphenium cations and corroborate our observation of a weak P-Npyridine bond, which was manifested experimentally as the Rh adducts undergo selective insertion of Rh into the P-Npyridine bond, depending on the substituent at phosphorus. The reported compounds provide a framework for further study of π-conjugated, N,N'-chelated phosphenium cations and their transition-metal adducts.

7.
Chemistry ; 26(56): 12751-12757, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293766

RESUMEN

The development of batteries and fuel cells has brought to light a need for carbon anode materials doped homogeneously with electrocatalytic metals. In particular, combinations of electrocatalysts in carbon have shown promising activity. A method to derive functional carbon materials is the pyrolysis of metallopolymers. This work describes the synthesis of a bifunctional phosphonium-based system derived from a phosphane-ene network. The olefin functionality can be leveraged in a hydrogermylation reaction to functionalize the material with Ge. Unaffected by this radical addition, the bromide counterion of the phosphonium cation can be used to subsequently incorporate a second metal in an ion-complexation reaction with CuBr2 . The characterization of the polymers and the derived ceramics are discussed.

8.
Langmuir ; 36(28): 8253-8264, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32568551

RESUMEN

Phosphonium and ammonium polymers can be combined with polyanions to form polyelectrolyte complex (PEC) networks, with potential application in self-healing materials and drug delivery vehicles. While various structures and compositions have been explored, to the best of our knowledge, analogous ammonium and phosphonium networks have not been directly compared to evaluate the effects of phosphorus versus nitrogen cations on the network properties. In this study, we prepared PECs from sodium alginate and poly[triethyl(4-vinylbenzyl)phosphonium chloride], poly[triethyl(4-vinylbenzyl)ammonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)ammonium chloride], and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride]. These networks were ultracentrifuged to form compact PECs (CoPECs), and their physical properties, chemical composition, and self-healing abilities were studied. In phosphate-buffered saline, the phosphonium polymer networks swelled to a higher degree than their ammonium salt-containing counterparts. However, the viscous and elastic moduli, along with their relaxation times, were quite similar for analogous phosphoniums and ammoniums. The CoPEC networks were loaded with anions including fluorescein, etodolac, and methotrexate, resulting in loading capacities ranging from 5 to 14 w/w % and encapsulation efficiencies from 29 to 93%. Anion release occurred over a period of several days to weeks, with the rate depending largely on the anion structure and polycation substituent groups. Whether the cation was an ammonium or a phosphonium had a smaller effect on the release rates. The cytotoxicities of the networks and polycations were investigated and found to depend on both the network and polycation structure.

9.
Biomacromolecules ; 21(1): 152-162, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31502452

RESUMEN

Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.


Asunto(s)
Compuestos Organofosforados/química , Polielectrolitos/química , Polielectrolitos/farmacocinética , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacocinética , Animales , Línea Celular , Diclofenaco/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Fluoresceína/química , Fluoresceína/farmacocinética , Ácido Hialurónico/química , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Microscopía Electrónica de Rastreo , Mioblastos/efectos de los fármacos , Polielectrolitos/toxicidad , Polímeros/síntesis química , Reología , Pruebas de Toxicidad , Ultracentrifugación
10.
Chemistry ; 25(65): 14790-14800, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31425637

RESUMEN

The reductive dehalogenation of a zwitterionic GeII species to make a zwitterionic GeI dimer with a 1,2-dicationic core is reported herein. To the root of the stability of this compound, the molecular and electronic structures were comprehensively characterized and investigated using crystallographic, spectroscopic, and computational methods. It was determined that the Ge centers are attracted because they are both electron-rich and positively charged. A comparison to the electronic structure in triphosphenium cations revealed varying degrees of covalent bonding and that this difference can be distinguished spectroscopically.

11.
Angew Chem Int Ed Engl ; 58(12): 3690-3693, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30653795

RESUMEN

The purpose of this Viewpoint is to discuss the molecular design principles that guide development of synthetic antimicrobial polymers, especially those intended to mimic the structure of host defense peptides (HDPs). In particular, we focus on the principle of "amphiphilic balance" as it relates to some recently developed polyphosphoniums with somewhat atypical structure. We find that the fundamental concept of amphiphilic balance is still applicable to these new polymers, but that the method to achieve such balance is somewhat unique. We then briefly outline the future challenges and opportunities in this field.


Asunto(s)
Antibacterianos/química , Polímeros/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/farmacología , Poliestirenos/química , Relación Estructura-Actividad
12.
Chemistry ; 24(3): 743-749, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29106762

RESUMEN

The phosphorus-sulfur heterocycles 1,2-thiaphosphetenes and phosphirene sulfides have been prepared, and represent the first structurally characterized derivatives for either class of compound. These strained P-S ring systems are formed by the reaction of a phosphinidene sulfide and alkyne. Using an internal alkyne, only the 3-membered PV , phosphirene sulfide was produced, whereas a terminal alkyne yielded a mixture of phosphirene sulfide and 1,2-thiaphosphetene (PIII ). Detailed computational analysis revealed that for numerous derivatives of alkynes, the corresponding 4-membered rings are always more stable than the 3-membered isomers. The electronic nature of "free" phosphinidene sulfides (R-P=S) is discussed based on computational results.

13.
Chemistry ; 24(3): 672-680, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29119625

RESUMEN

Four-membered rings with a P2 BCh core (Ch=S, Se) have been synthesized by the reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2 ). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P-P, not P-B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n=2, 3), was probed by the addition of N-heterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species.

14.
Angew Chem Int Ed Engl ; 57(40): 13252-13256, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30011124

RESUMEN

The synthesis of phosphane-ene photopolymer networks, where the networks are composed of crosslinked tertiary alkyl phosphines are reported. Taking advantage of the rich coordination chemistry of alkyl phosphines, stibino-phosphonium and stibino-bis(phosphonium) functionalized polymer networks could be generated. Small-molecule stibino-phosphonium and stibino-bis(phosphonium) compounds have been well characterized previously and were used as models for spectroscopic comparison to the macromolecular analogues by NMR and XANES spectroscopy. This work reveals that the physical and electronic properties of the materials can be tuned depending on the type of coordination environment. These materials can be used as ceramic precursors, where the Sb-functionalized polymers influence the composition of the resulting ceramic.

15.
Angew Chem Int Ed Engl ; 57(39): 12707-12710, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-29996005

RESUMEN

There is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic-resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar-functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and very low haemolytic activity against red blood cells. These results challenge the conventional wisdom in the field that lipophilic alkyl substituents are required for high antibacterial activity and opens prospects for new classes of antibacterial polymers.


Asunto(s)
Antibacterianos/química , Polímeros/química , Azúcares/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Compuestos Organofosforados/química , Polímeros/síntesis química , Polímeros/farmacología , Staphylococcus aureus/efectos de los fármacos , Compuestos de Vinilo/química
16.
Langmuir ; 33(51): 14738-14747, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29179545

RESUMEN

The ability to manipulate block copolymers on the nanoscale has led to many scientific and technological advances. These include nanoscale ordered bulk and thin films and also solution phase components; these are promising materials for making smaller ordered electronics, selective membranes, and also biomedical applications. The ability to manipulate block copolymer material architectures on such small scales has risen from thorough investigations into the properties that affect the architectures. Polyelectrolytes are an important class of polymers that are used to make amphiphilic block copolymers. In this context the authors synthesized polystyrene-b-polyphosphonium block copolymers with different anions coordinated to the polyphosphonium block in order to study the effect of the anion on the aqueous self-assembly of the polymers. The anions play an important role in the solubility of the monomeric materials which results in differences in the self-assembly observed through dynamic light scattering and transmission electron microscopy.

17.
Biomacromolecules ; 18(3): 914-923, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28165737

RESUMEN

New approaches to treat bacterial infections are badly needed to address the increasing problem of antibiotic resistance. This study explores phosphonium-functionalized block copolymer micelles as intrinsically antibacterial polymer assemblies. Phosphonium cations with varying alkyl lengths were conjugated to the terminus of a poly(ethylene oxide)-polycaprolactone block copolymer, and the phosphonium-functionalized block copolymers were self-assembled to form micelles in aqueous solution. The size, morphology, and ζ-potential of the assemblies were studied, and their abilities to kill Escherichia coli and Staphylococcus aureus were evaluated. It was found that the minimum bactericidal concentration depended on the phosphonium alkyl chain length, and different trends were observed for Gram-negative and Gram-positive bacteria. The most active assemblies exhibited no hemolysis of red blood cells above the bactericidal concentrations, indicating that they can selectively disrupt the membranes of bacteria. Furthermore, it was possible to encapsulate and release the antibiotic tetracycline using the assemblies, providing a potential multimechanistic approach to bacterial killing.


Asunto(s)
Antibacterianos/farmacología , Micelas , Compuestos Organofosforados/química , Polímeros/química , Animales , Antibacterianos/química , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hemólisis , Pruebas de Sensibilidad Microbiana , Poliésteres/química , Polietilenglicoles/química , Ovinos , Staphylococcus aureus/efectos de los fármacos
18.
Inorg Chem ; 56(21): 13500-13509, 2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29027797

RESUMEN

The reactivity of 4-membered (RPCh)2 rings (Ch = S, Se) that contain phosphorus in the +3 oxidation state is reported. These compounds undergo ring expansion to (RPCh)3 with the addition of a Lewis base. The 6-membered rings were found to be more stable than the 4-membered precursors, and the mechanism of their formation was investigated experimentally and by density functional theory calculations. The computational work identified two plausible mechanisms involving a phosphinidene chalcogenide intermediate, either as a free species or stabilized by a suitable base. Both the 4- and 6-membered rings were found to react with coinage metals, giving the same products: (RPCh)3 rings bound to the metal center from the phosphorus atom in tripodal fashion.

19.
Inorg Chem ; 56(15): 9111-9119, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28737903

RESUMEN

The manipulation of white phosphorus (P4) has been a long-standing challenge for chemists. While the holy grail remains at finding a method to catalytically activate and functionalize P4 to yield new organophosphorus compounds, fundamental research lies in developing procedures to control the reactivity of elemental phosphorus. In this work, Lewis acidic transition metal moieties M(CO)5 (M = Cr, Mo, W) and AuCl react with P4 derivatized with a low valent germanium compound. For both M(CO)5 and AuCl, bis-functionalized products can be formed; however the monosubstituted derivatives are found to be more stable, and the decomposition can be monitored by 31P{1H} NMR spectroscopy. The selective reactivity of white phosphorus, once a P-P bond has been activated, is a key step in yielding new organophosphorus compounds.

20.
Angew Chem Int Ed Engl ; 56(22): 6236-6240, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28071846

RESUMEN

Four-membered rings with a P2 Ch2 core (Ch=S, Se) and phosphorus in the +3 oxidation state have been synthesized. The utility of these rings as a source of monomeric phosphinidene chalcogenides was probed by the addition of an N-heterocyclic carbene, resulting in a base-stabilized phosphinidene sulfide. Similarly, persistence of the phosphinidene selenide in solution was shown through cycloaddition chemistry with 2,3-dimethylbutadiene at elevated temperatures. The observed reactivity was explained by detailed computational work that established the conditions upon which the P2 Ch2 rings can liberate phosphinidene chalcogenides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA