Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Control Release ; 367: 27-44, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38215984

RESUMEN

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Asunto(s)
Enfermedad de Huntington , Oligonucleótidos Antisentido , Ratones , Animales , Oligonucleótidos Antisentido/uso terapéutico , Apolipoproteína A-I/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Oligonucleótidos/uso terapéutico , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/uso terapéutico , Modelos Animales de Enfermedad
2.
Mol Cancer Res ; 16(1): 16-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993511

RESUMEN

Cell-cycle progression and the acquisition of a migratory phenotype are hallmarks of human carcinoma cells that are perceived as independent processes but may be interconnected by molecular pathways that control microtubule nucleation at centrosomes. Here, cell-cycle progression dramatically impacts the engraftment kinetics of 4T1-luciferase2 breast cancer cells in immunocompetent BALB/c or immunocompromised NOD-SCID gamma (NSG) mice. Multiparameter imaging of wound closure assays was used to track cell-cycle progression, cell migration, and associated phenotypes in epithelial cells or carcinoma cells expressing a fluorescence ubiquitin cell-cycle indicator. Cell migration occurred with an elevated velocity and directionality during the S-G2-phase of the cell cycle, and cells in this phase possess front-polarized centrosomes with augmented microtubule nucleation capacity. Inhibition of Aurora kinase-A (AURKA/Aurora-A) dampens these phenotypes without altering cell-cycle progression. During G2-phase, the level of phosphorylated Aurora-A at centrosomes is reduced in hyaluronan-mediated motility receptor (HMMR)-silenced cells as is the nuclear transport of TPX2, an Aurora-A-activating protein. TPX2 nuclear transport depends upon HMMR-T703, which releases TPX2 from a complex with importin-α (KPNA2) at the nuclear envelope. Finally, the abundance of phosphorylated HMMR-T703, a substrate for Aurora-A, predicts breast cancer-specific survival and relapse-free survival in patients with estrogen receptor (ER)-negative (n = 941), triple-negative (TNBC) phenotype (n = 538), or basal-like subtype (n = 293) breast cancers, but not in those patients with ER-positive breast cancer (n = 2,218). Together, these data demonstrate an Aurora-A/TPX2/HMMR molecular axis that intersects cell-cycle progression and cell migration.Implications: Tumor cell engraftment, migration, and cell-cycle progression share common regulation of the microtubule cytoskeleton through the Aurora-A/TPX2/HMMR axis, which has the potential to influence the survival of patients with ER-negative breast tumors. Mol Cancer Res; 16(1); 16-31. ©2017 AACR.


Asunto(s)
Aurora Quinasa A/genética , Proteínas de Ciclo Celular/metabolismo , Animales , Aurora Quinasa A/metabolismo , Femenino , Humanos , Ratones , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA