Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inflammopharmacology ; 29(4): 907-923, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33740221

RESUMEN

Berries are natural sources of anthocyanins, especially cyanidin-3-glucoside (C3G), and exhibit significant antioxidant, antidiabetic, anti-inflammatory, and cytoprotective effects against various oxidative stress-induced disorders. C3G and its metabolites possess higher absorption and bioavailability, and interaction with gut microbiota may enhance their health benefits. Various in vitro studies have shown the reactive oxygen species (ROS)-mitigating potential of C3G. However, in in vivo models, C3G exerts its cytoprotective properties by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. Despite existing reports stating various health benefits of C3G, its antioxidant potential by modulating the Nrf2 pathway remains less identified. This review discusses the Nrf2-mediated antioxidant response of C3G in modulating oxidative stress against DNA damage, apoptosis, carcinogen toxicity, and inflammatory conditions. Furthermore, we have reviewed the recent clinical trial data to establish cross talk between a berry-rich diet and disease prevention.


Asunto(s)
Antocianinas/farmacología , Antocianinas/uso terapéutico , Frutas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/prevención & control , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
2.
Rev Endocr Metab Disord ; 21(4): 577-597, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32185602

RESUMEN

Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.


Asunto(s)
Hiperinsulinismo Congénito/diagnóstico , Hiperinsulinismo Congénito/terapia , Adolescente , Niño , Preescolar , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Humanos , Lactante
3.
J Am Soc Nephrol ; 28(8): 2529-2539, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28373276

RESUMEN

Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene (PMM2), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic ß cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy.


Asunto(s)
Hiperinsulinismo Congénito/complicaciones , Hiperinsulinismo Congénito/genética , Mutación , Fosfotransferasas (Fosfomutasas)/genética , Enfermedades Renales Poliquísticas/complicaciones , Enfermedades Renales Poliquísticas/genética , Regiones Promotoras Genéticas/genética , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
4.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613000

RESUMEN

Infections pose a significant threat to morbidity and mortality during treatments for pediatric cancer patients. Efforts to minimize the risk of infection necessitate preventive measures encompassing both environmental and host-focused strategies. While a substantial number of infections in oncologic patients originate from microorganisms within their native microbiological environment, such as the oral cavity, intestines, and skin, the concrete risk of bloodstream infections linked to the consumption of contaminated food and beverages in the community cannot be overlooked. Ensuring food quality and hygiene is essential to mitigating the impact of foodborne illnesses on vulnerable patients. The neutropenic diet (ND) has been proposed to minimize the risk of sepsis during neutropenic periods. The ND aims to minimize bacterial entry into the gut and bacterial translocation. However, a standardized definition for ND and consensus guidelines for specific food exclusions are lacking. Most centers adopt ND during neutropenic phases, but challenges in achieving caloric intake are common. The ND has not demonstrated any associated benefits and does not ensure improved overall survival. Consequently, providing unified and standardized food safety instructions is imperative for pediatric patients undergoing hematopoietic cell transplantation (HCT). Despite the lack of evidence, ND is still widely administered to both pediatric and adult patients as a precautionary measure. This narrative review focuses on the impact of foodborne infections in pediatric cancer patients and the role of the ND in comparison to food safety practices in patients undergoing chemotherapy or HCT. Prioritizing education regarding proper food storage, preparation, and cooking techniques proves more advantageous than merely focusing on dietary limitations. The absence of standardized guidelines underscores the necessity for further research in this field.


Asunto(s)
Dieta , Neoplasias , Adulto , Humanos , Niño , Neoplasias/complicaciones , Ingestión de Energía , Alimentos , Oncología Médica
5.
Nutrients ; 15(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36771416

RESUMEN

Children with cancer are at high risk for developing short-term and long-term nutritional problems related to their underlying disease and side effects of multimodal treatments. Nutritional status (NS) can influence several clinical outcomes, such as overall survival (OS) and event-free survival (EFS), treatment tolerance, risk of developing infections and quality of life (QoL). However, the importance of nutrition in children with cancer is still underestimated. This review focuses on alterations of NS that occurs in children during cancer treatment. In particular, we reviewed the pathogenesis of undernutrition in oncological children, as well as how NS affects treatment tolerance and response, the immune system and the risk of infections of children with cancer. Thanks to recent advances in all types of supportive therapy and to the progress of knowledge on this topic, it has been realized that NS is a modifiable prognostic factor that can be intervened upon to improve the outcome of these patients. Currently, there is a lack of a systematic approach and standard recommendations for nutritional care in the pediatric cancer population. Literature analysis showed that it is essential to define the NS and treat any alterations in a timely manner ensuring proper growth and development. Nutritional follow-up should become an integral part of the care pathway. Regular nutritional monitoring should be performed at diagnosis, during treatment and during follow-up. A close collaboration and sharing of expertise between pediatric oncologists and nutrition specialists, combined with careful and participatory sharing of the feeding experience with the family and the child (after age 6 years), is strongly required.


Asunto(s)
Desnutrición , Neoplasias , Niño , Humanos , Estado Nutricional , Calidad de Vida , Nutrición Enteral/efectos adversos , Apoyo Nutricional/efectos adversos , Desnutrición/epidemiología , Neoplasias/complicaciones , Neoplasias/terapia
6.
Children (Basel) ; 9(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35626793

RESUMEN

Deep neck infections (DNIs) include all the infections sited in the potential spaces and fascial planes of the neck within the limits of the deep layer of the cervical fascia. Parapharyngeal and retropharyngeal infections leading to parapharyngeal abscess (PPA) and retropharyngeal abscess (RPA) are the most common. DNIs remain an important health problem, especially in children. The aim of this narrative review is to describe the management of peritonsillar, retropharyngeal and parapharyngeal abscesses in pediatric age. Despite relatively uncommon, pediatric DNIs deserve particular attention as they can have a very severe course and lead to hospitalization, admission to the intensive care unit and, although very rarely, death. They generally follow a mild upper respiratory infection and can initially present with signs and symptoms that could be underestimated. A definite diagnosis can be made using imaging techniques. Pus collection from the site of infection, when possible, is strongly recommended for definition of diseases etiology. Blood tests that measure the inflammatory response of the patient may contribute to monitor disease evolution. The therapeutic approach should be targeted toward the individual patient. Regardless of the surgical treatment, antibiotics are critical for pediatric DNI prognosis. The diagnostic-therapeutic procedure to be followed in the individual patient is not universally shared because it has not been established which is the most valid radiological approach and which are the criteria to be followed for the differentiation of cases to be treated only with antibiotics and those in which surgery is mandatory. Further studies are needed to ensure the best possible care for all children with DNIs, especially in this era of increased antimicrobial resistance.

7.
Antibiotics (Basel) ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35884117

RESUMEN

A surgical site infection (SSI) is an infection that occurs in the incision created by an invasive surgical procedure. Although most infections are treatable with antibiotics, SSIs remain a significant cause of morbidity and mortality after surgery and have a significant economic impact on health systems. Preventive measures are essential to decrease the incidence of SSIs and antibiotic abuse, but data in the literature regarding risk factors for SSIs in the pediatric age group are scarce, and current guidelines for the prevention of the risk of developing SSIs are mainly focused on the adult population. This document describes the current knowledge on risk factors for SSIs in neonates and children undergoing surgery and has the purpose of providing guidance to health care professionals for the prevention of SSIs in this population. Our aim is to consider the possible non-pharmacological measures that can be adopted to prevent SSIs. To our knowledge, this is the first study to provide recommendations based on a careful review of the available scientific evidence for the non-pharmacological prevention of SSIs in neonates and children. The specific scenarios developed are intended to guide the healthcare professional in practice to ensure standardized management of the neonatal and pediatric patients, decrease the incidence of SSIs and reduce antibiotic abuse.

8.
J Clin Res Pediatr Endocrinol ; 13(1): 34-43, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32938580

RESUMEN

Objective: Bi-allelic mutations in the wolframin gene (WFS1) cause Wolfram syndrome 1 (WS1 or DIDMOAD) characterized by nonautoimmune diabetes mellitus, optic atrophy, diabetes insipidus, sensorineural deafness, urinary tract abnormalities, and neuropsychiatric disorders. Patients presenting with an incomplete phenotype of WS1 were evaluated using homozygosity mapping and subsequent whole-exome sequencing. Methods: Four unrelated consanguineous Turkish families, including seven affected children, and their unaffected parents and siblings were evaluated. Homozygosity mapping was performed, followed by whole-exome sequencing of WFS1. Mutations were classified according to results of "in silico" analyses, protein prediction, and functional consequences. Results: Homozygosity mapping confirmed shared homozygous regions on chromosome 4 (chr4p16.1) between the affected individuals, that was absent in their unaffected siblings. Exome sequencing identified three novel (c.1215T>A, c.554G>A, c.1525_1540dup) and one known (c.1522_1523delTA) mutations in WFS1. All mutations were predicted to cause stop codon leading to early termination of protein synthesis and complete loss-of-function. All patients were found to be homozygous for the change, with parents and other unaffected siblings being carriers. Conclusion: Our study expands the mutation spectrum of WSF1 mutations with three novel mutations. Homozygosity mapping may provide enrichment for molecular genetic analysis and early diagnosis of WS1 patients with incomplete phenotype, particularly in consanguineous pedigrees.


Asunto(s)
Proteínas de la Membrana/genética , Síndrome de Wolfram/genética , Síndrome de Wolfram/fisiopatología , Adolescente , Adulto , Niño , Consanguinidad , Femenino , Humanos , Masculino , Linaje , Turquía , Adulto Joven
9.
RSC Med Chem ; 11(4): 438-454, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479648

RESUMEN

Selective estrogen receptor downregulators (SERDs) are a novel class of compounds capable of reducing the ERα protein level and blocking ER activity. Therefore, SERDs are considered as a significant therapeutic approach to treat ER+ breast cancer in both early stage and more advanced drug-resistant cases. After the FDA approval of a steroidal drug, fulvestrant, as a SERD for the treatment of breast cancer in patients who have progressed on antihormonal agents, several molecules with diverse chemical structures have been rapidly developed, studied and evaluated for selective estrogen receptor downregulation activity. Here we compile the promising SERDs reported in recent years and discuss the chemical structure and pharmacological profile of the most potent compound of the considered series. Because of the availability of only a limited number of effective drugs for the treatment of breast cancer, the quest for a potent SERD with respectable activity and bioavailability is still ongoing. The goal of this article is to make available to the reader an overview of the current progress in SERDs and provide clues for the future discovery and development of novel pharmacological potent SERDs for the treatment of breast cancer.

10.
Biomedicines ; 8(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823757

RESUMEN

The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.

11.
J Genet Genomics ; 47(10): 618-626, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33358777

RESUMEN

Congenital hearing loss is a common disorder worldwide. Heterogeneous gene variation accounts for approximately 20-25% of such patients. We investigated a five-generation Chinese family with autosomal-dominant nonsyndromic sensorineural hearing loss (SNHL). No wave was detected in the pure-tone audiometry, and the auditory brainstem response was absent in all patients. Computed tomography of the patients, as well as of two sporadic SNHL cases, showed bilateral inner ear anomaly, cochlear maldevelopment, absence of the osseous spiral lamina, and an enlarged vestibular aqueduct. Such findings were absent in nonaffected persons. We used linkage analysis and exome sequencing and uncovered a heterozygous missense mutation in the PI4KB gene (p.Gln121Arg) encoding phosphatidylinositol 4-kinase ß (PI4KB) from the patients in this family. In addition, 3 missense PI4KB (p.Val434Gly, p.Glu667Lys, and p.Met739Arg) mutations were identified in five patients with nonsyndromic SNHL from 57 sporadic cases. No such mutations were present within 600 Chinese controls, the 1000 genome project, gnomAD, or similar databases. Depleting pi4kb mRNA expression in zebrafish caused inner ear abnormalities and audiosensory impairment, mimicking the patient phenotypes. Moreover, overexpression of 4 human missense PI4KB mutant mRNAs in zebrafish embryos resulted in impaired hearing function, suggesting dominant-negative effects. Taken together, our results reveal that PI4KB mutations can cause SNHL and inner ear malformation. PI4KB should be included in neonatal deafness screening.


Asunto(s)
Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/genética , Enfermedades del Laberinto/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Cóclea/patología , Oído Interno/patología , Femenino , Ligamiento Genético/genética , Pérdida Auditiva Sensorineural/patología , Humanos , Lactante , Recién Nacido , Enfermedades del Laberinto/patología , Masculino , Mutación Missense/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Secuenciación del Exoma , Pez Cebra/genética
12.
Bone ; 127: 427-435, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31306808

RESUMEN

OBJECTIVE: Bone loss in anorexia nervosa and following bariatric surgery is associated with an elevated circulating concentration of the gastrointestinal, anorexigenic hormone, peptide YY (PYY). Selective deletion of the PYY receptor Y1R in osteoblasts or Y2R in the hypothalamus results in high bone mass, but deletion of PYY in mice has resulted in conflicting skeletal phenotypes leading to uncertainty regarding its role in the regulation of bone mass. As PYY analogs are under development for treatment of obesity, we aimed to clarify the relationship between PYY and bone mass. METHODS: The skeletal phenotype of Pyy knockout (KO) mice was investigated during growth (postnatal day P14) and adulthood (P70 and P186) using X-ray microradiography, micro-CT, back-scattered electron scanning electron microscopy (BSE-SEM), histomorphometry and biomechanical testing. RESULTS: Bones from juvenile and Pyy KO mice were longer (P < 0.001), with decreased bone mineral content (P < 0.001). Whereas, bones from adult Pyy KO mice had increased bone mineral content (P < 0.05) with increased mineralisation of both cortical (P < 0.001) and trabecular (P < 0.001) compartments. Long bones from adult Pyy KO mice were stronger (maximum load P < 0.001), with increased stiffness (P < 0.01) and toughness (P < 0.05) compared to wild-type (WT) control mice despite increased cortical vascularity and porosity (P < 0.001). The increased bone mass and strength in Pyy KO mice resulted from increases in trabecular (P < 0.01) and cortical bone formation (P < 0.05). CONCLUSIONS: These findings demonstrate that PYY acts as a negative regulator of osteoblastic bone formation, implicating increased PYY levels in the pathogenesis of bone loss during anorexia or following bariatric surgery.


Asunto(s)
Huesos/anatomía & histología , Huesos/fisiología , Péptido YY/metabolismo , Animales , Densidad Ósea , Desarrollo Óseo , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Calcificación Fisiológica , Hueso Cortical/irrigación sanguínea , Hueso Cortical/ultraestructura , Femenino , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Osteoclastos/patología , Porosidad
13.
EBioMedicine ; 42: 470-480, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30878599

RESUMEN

BACKGROUND: The heterotrimeric GTP-binding protein eIF2 forms a ternary complex with initiator methionyl-tRNA and recruits it to the 40S ribosomal subunit for start codon selection and thereby initiates protein synthesis. Mutations in EIF2S3, encoding the eIF2γ subunit, are associated with severe intellectual disability and microcephaly, usually as part of MEHMO syndrome. METHODS: Exome sequencing of the X chromosome was performed on three related males with normal head circumferences and mild learning difficulties, hypopituitarism (GH and TSH deficiencies), and an unusual form of glucose dysregulation. In situ hybridisation on human embryonic tissue, EIF2S3-knockdown studies in a human pancreatic cell line, and yeast assays on the mutated corresponding eIF2γ protein, were performed in this study. FINDINGS: We report a novel hemizygous EIF2S3 variant, p.Pro432Ser, in the three boys (heterozygous in their mothers). EIF2S3 expression was detectable in the developing pituitary gland and pancreatic islets of Langerhans. Cells lacking EIF2S3 had increased caspase activity/cell death. Impaired protein synthesis and relaxed start codon selection stringency was observed in mutated yeast. INTERPRETATION: Our data suggest that the p.Pro432Ser mutation impairs eIF2γ function leading to a relatively mild novel phenotype compared with previous EIF2S3 mutations. Our studies support a critical role for EIF2S3 in human hypothalamo-pituitary development and function, and glucose regulation, expanding the range of phenotypes associated with EIF2S3 mutations beyond classical MEHMO syndrome. Untreated hypoglycaemia in previous cases may have contributed to their more severe neurological impairment and seizures in association with impaired EIF2S3. FUND: GOSH, MRF, BRC, MRC/Wellcome Trust and NIGMS funded this study.


Asunto(s)
Factor 2 Eucariótico de Iniciación/genética , Genes Ligados a X , Glucosa/metabolismo , Hipopituitarismo/etiología , Hipopituitarismo/metabolismo , Fenotipo , Sustitución de Aminoácidos , Apoptosis , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Línea Celular , Preescolar , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Hipopituitarismo/diagnóstico , Hibridación in Situ , Lactante , Imagen por Resonancia Magnética , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Biosíntesis de Proteínas
14.
Artículo en Inglés | MEDLINE | ID: mdl-28855921

RESUMEN

Glucose homeostasis requires appropriate and synchronous coordination of metabolic events and hormonal activities to keep plasma glucose concentrations in a narrow range of 3.5-5.5 mmol/L. Insulin, the only glucose lowering hormone secreted from pancreatic ß-cells, plays the key role in glucose homeostasis. Insulin release from pancreatic ß-cells is mainly regulated by intracellular ATP-generating metabolic pathways. Hyperinsulinaemic hypoglycaemia (HH), the most common cause of severe and persistent hypoglycaemia in neonates and children, is the inappropriate secretion of insulin which occurs despite low plasma glucose levels leading to severe and persistent hypoketotic hypoglycaemia. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) constitute the underlying molecular mechanisms of congenital HH. Since insulin supressess ketogenesis, the alternative energy source to the brain, a prompt diagnosis and immediate management of HH is essential to avoid irreversible hypoglycaemic brain damage in children. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This up to date review article provides a background to the diagnosis, molecular genetics, recent advances and therapeutic options in the field of HH in children.

15.
Lancet Diabetes Endocrinol ; 5(9): 729-742, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27915035

RESUMEN

Pancreatic ß cells are functionally programmed to release insulin in response to changes in plasma glucose concentration. Insulin secretion is precisely regulated so that, under normal physiological conditions, fasting plasma glucose concentrations are kept within a narrow range of 3·5-5·5 mmol/L. In hyperinsulinaemic hypoglycaemia, insulin secretion becomes dysregulated (ie, uncoupled from glucose metabolism) so that insulin secretion persists in the presence of low plasma glucose concentrations. Hyperinsulinaemic hypoglycaemia is the most common cause of severe and persistent hypoglycaemia in neonates and children. At a molecular level, mutations in nine different genes can lead to the dysregulation of insulin secretion and cause this disorder. In adults, hyperinsulinaemic hypoglycaemia accounts for 0·5-5·0% of cases of hypoglycaemia and can be due either to ß-cell tumours (insulinomas) or ß-cell hyperplasia. Rapid diagnosis and prompt management of hyperinsulinaemic hypoglycaemia is essential to avoid hypoglycaemic brain injury, especially in the vulnerable neonatal and childhood periods. Advances in the field of hyperinsulinaemic hypoglycaemia include use of rapid molecular genetic testing for the disease, application of novel imaging techniques (6-[fluoride-18]fluoro-levodopa [18F-DOPA] PET-CT and glucagon-like peptide 1 (GLP-1) receptor imaging), and development of novel medical treatments (eg, long-acting octreotide formulations, mTOR inhibitors, and GLP-1 receptor antagonists) and surgical therapies (eg, laparoscopic surgery).


Asunto(s)
Hiperinsulinismo , Hipoglucemia , Adolescente , Niño , Glucosa/metabolismo , Humanos , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/etiología , Hiperinsulinismo/terapia , Hipoglucemia/diagnóstico , Hipoglucemia/etiología , Hipoglucemia/terapia , Hipoglucemiantes/uso terapéutico , Células Secretoras de Insulina/metabolismo
16.
Cell Rep ; 19(11): 2202-2209, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28614708

RESUMEN

The obesity epidemic is a significant global health issue. Improved understanding of the mechanisms that regulate appetite and body weight will provide the rationale for the design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis through their interaction with thyroid hormone receptors (TRs), which function as ligand-inducible transcription factors. The TR-beta isoform (TRß) is expressed in the ventromedial hypothalamus (VMH), a brain area important for control of energy homeostasis. Here, we report that selective knockdown of TRß in the VMH of adult mice results in severe obesity due to hyperphagia and reduced energy expenditure. The observed increase in body weight is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. These data identify TRß in the VMH as a major physiological regulator of food intake and energy homeostasis.


Asunto(s)
Peso Corporal/genética , Ingestión de Alimentos/genética , Receptores beta de Hormona Tiroidea/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Peso Corporal/fisiología , Masculino , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-27065949

RESUMEN

Under normal physiological conditions, pancreatic ß-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5-5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the ß-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult's insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion.

18.
Arch Dis Child ; 101(6): 569-574, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26369574

RESUMEN

Glucose is the key metabolic substrate for tissue energy production. In the perinatal period the mother supplies glucose to the fetus and for most of the gestational period the normal lower limit of fetal glucose concentration is around 3 mmol/L. Just after birth, for the first few hours of life in a normal term neonate appropriate for gestational age, blood glucose levels can range between 1.4 mmol/L and 6.2 mmol/L but by about 72 h of age fasting blood glucose levels reach normal infant, child and adult values (3.5-5.5 mmol/L). Normal blood glucose levels are maintained within this narrow range by factors which control glucose production and glucose utilisation. The key hormones which regulate glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, cortisol and growth hormone. Pathological states that affect either glucose production or utilisation will lead to hypoglycaemia. Although hypoglycaemia is a common biochemical finding in children (especially in the newborn) it is not possible to define by a single (or a range of) blood glucose value/s. It can be defined as the concentration of glucose in the blood or plasma at which the individual demonstrates a unique response to the abnormal milieu caused by the inadequate delivery of glucose to a target organ (eg, the brain). Hypoglycaemia should therefore be considered as a continuum and the blood glucose level should be interpreted within the clinical scenario and with respect to the counter-regulatory hormonal responses and intermediate metabolites.


Asunto(s)
Glucemia/metabolismo , Adolescente , Adulto , Lactancia Materna , Niño , Preescolar , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Ayuno/sangre , Femenino , Feto/química , Transportador de Glucosa de Tipo 1/fisiología , Glucógeno/metabolismo , Hormonas/metabolismo , Humanos , Hipoglucemia/sangre , Hipoglucemia/diagnóstico , Lactante , Recién Nacido , Intercambio Materno-Fetal/fisiología , Embarazo
19.
J Pediatr Endocrinol Metab ; 29(5): 585-9, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26910739

RESUMEN

BACKGROUND: Alström syndrome (AS) is an extremely rare, autosomal recessive disorder characterised by multi-organ features that typically manifest within the first two decades of life. AS is caused by mutations in the Alström syndrome 1 (ALMS1) gene located at 2p13.1. METHODS: In the current study, two brothers from a first-cousin consanguineous family presented with a complex phenotype and were suspected of having AS. RESULTS: Both brothers were found to be homozygous for a novel nonsense c.7310C>A (p.S2437X) mutation in exon-8 of ALMS1 gene. The consanguineous parents were sequenced and both were heterozygous for the same mutation. CONCLUSIONS: This particular mutation has never been reported before and confirmed the diagnosis of AS in the patients. Our work identifies a novel mutation in ALMS1 gene responsible for the complex phenotype of AS in these patients.


Asunto(s)
Síndrome de Alstrom/genética , Mutación/genética , Proteínas/genética , Adolescente , Adulto , Síndrome de Alstrom/patología , Proteínas de Ciclo Celular , Niño , Consanguinidad , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Linaje , Fenotipo , Pronóstico , Hermanos , Turquía , Adulto Joven
20.
J Mol Endocrinol ; 54(2): R119-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25733449

RESUMEN

Congenital hyperinsulinism (CHI) is a complex heterogeneous condition in which insulin secretion from pancreatic ß-cells is unregulated and inappropriate for the level of blood glucose. The inappropriate insulin secretion drives glucose into the insulin-sensitive tissues, such as the muscle, liver and adipose tissue, leading to severe hyperinsulinaemic hypoglycaemia (HH). At a molecular level, genetic abnormalities in nine different genes (ABCC8, KCNJ11, GLUD1, GCK, HNF4A, HNF1A, SLC16A1, UCP2 and HADH) have been identified which cause CHI. Autosomal recessive and dominant mutations in ABCC8/KCNJ11 are the commonest cause of medically unresponsive CHI. Mutations in GLUD1 and HADH lead to leucine-induced HH, and these two genes encode the key enzymes glutamate dehydrogenase and short chain 3-hydroxyacyl-CoA dehydrogenase which play a key role in amino acid and fatty acid regulation of insulin secretion respectively. Genetic abnormalities in HNF4A and HNF1A lead to a dual phenotype of HH in the newborn period and maturity onset-diabetes later in life. This state of the art review provides an update on the molecular basis of CHI.


Asunto(s)
Hiperinsulinismo Congénito/genética , Animales , Hiperinsulinismo Congénito/patología , Humanos , Insulina/metabolismo , Secreción de Insulina , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA