Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474604

RESUMEN

Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/ß-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.


Asunto(s)
Luteolina , Neoplasias , Humanos , Luteolina/farmacología , Flavonoides/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Apoptosis , Proliferación Celular , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731498

RESUMEN

Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.


Asunto(s)
Antiinflamatorios , Inflamación , Quempferoles , Quempferoles/farmacología , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/química
3.
Molecules ; 29(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38202711

RESUMEN

This study evaluates the anti-diabetic potential and underlying mechanisms of curcumin in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were randomly divided into four groups: normal control, negative control (diabetic group), diabetic group receiving glibenclamide (positive control group), and curcumin plus STZ (treatment group). The anti-diabetic activities of curcumin were examined at a dose of 50 mg/kg body weight through physiological, biochemical, and histopathological analysis. Compared to the normal control group rats, elevated levels of glucose, creatinine, urea, triglycerides (TG), and total cholesterol (TC) and low levels of insulin were found in the negative control rats. Curcumin treatment showed a significant decrease in these parameters and an increase in insulin level as compared to negative control rats. In negative control rats, a reduced level of antioxidant enzymes and an increased level of lipid peroxidation and inflammatory marker levels were noticed. Oral administration of curcumin significantly ameliorated such changes. From histopathological findings, it was noted that diabetic rats showed changes in the kidney tissue architecture, including the infiltration of inflammatory cells, congestion, and fibrosis, while oral administration of curcumin significantly reduced these changes. Expression of IL-6 and TNF-α protein was high in diabetic rats as compared to the curcumin treatment groups. Hence, based on biochemical and histopathological findings, this study delivers a scientific suggestion that curcumin could be a suitable remedy in the management of diabetes mellitus.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Curcuma , Curcumina/farmacología , Estreptozocina , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Insulina
4.
Biomedicines ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927560

RESUMEN

Apigenin is a powerful flavone compound found in numerous fruits and vegetables, and it offers numerous health-promoting benefits. Many studies have evidenced that this compound has a potential role as an anti-inflammatory and antioxidant compound, making it a promising candidate for reducing the risk of pathogenesis. It has also been found to positively affect various systems in the body, such as the respiratory, digestive, immune, and reproductive systems. Apigenin is effective in treating liver, lung, heart, kidney, neurological diseases, diabetes, and maintaining good oral and skin health. Multiple studies have reported that this compound is capable of suppressing various types of cancer through the induction of apoptosis and cell-cycle arrest, suppressing cell migration and invasion, reduction of inflammation, and inhibiting angiogenesis. When used in combination with other drugs, apigenin increases their efficacy, reduces the risk of side effects, and improves the response to chemotherapy. This review broadly analyzes apigenin's potential in disease management by modulating various biological activities. In addition, this review also described apigenin's interaction with other compounds or drugs and the potential role of nanoformulation in different pathogeneses. Further extensive research is needed to explore the mechanism of action, safety, and efficacy of this compound in disease prevention and treatment.

5.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927099

RESUMEN

The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.


Asunto(s)
Antioxidantes , Catalasa , Estrés Oxidativo , Catalasa/metabolismo , Catalasa/química , Humanos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Terapia Genética/métodos
6.
Int J Nanomedicine ; 19: 5335-5363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859956

RESUMEN

The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Animales , Streptococcus pyogenes/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química
7.
Biomedicines ; 11(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38137424

RESUMEN

Cancer is a major public health concern worldwide in terms of mortality. The exact reason behind the development of cancer is not understood clearly, but it is evidenced that alcohol consumption, radiation, and exposure to chemicals are main players in this pathogenesis. The current mode of treatments such as surgery, chemotherapy, and radiotherapy are effective, but, still, cancer is a major problem leading to death and other side effects. However, safer and effective treatment modules are needed to overcome the adverse effects of current treatment modules. In this regard, natural compounds have been recognized to ameliorate diseases by exerting anti-inflammatory, anti-oxidative, and anti-tumor potential through several mechanisms. Mangiferin, a xanthone C-glucoside, is found in several plant species including Mangifera indica (mango), and its role in disease prevention has been confirmed through its antioxidant and anti-inflammatory properties. Furthermore, its anti-cancer-potential mechanism has been designated through modulation of cell signaling pathways such as inflammation, angiogenesis, PI3K/AKT, apoptosis, and cell cycle. This article extensively reviews the anticancer potential of mangiferin in different cancers through the modulation of cell signaling pathways. Moreover, the synergistic effects of this compound with some commonly used anti-cancer drugs against different cancer cells are discussed. More clinical trials should be performed to reconnoiter the anti-cancer potential of this compound in human cancer treatment. Further, understanding of mechanisms of action and the safety level of this compound can help to manage diseases, including cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA