Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 556(7700): 249-254, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29615789

RESUMEN

Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Fosfofructoquinasa-2/metabolismo , Activación Transcripcional , Factor de Transcripción Activador 4/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glucólisis , Humanos , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Ratones , Metástasis de la Neoplasia , Vía de Pentosa Fosfato , Fosforilación , Fosfoserina/metabolismo , Pronóstico , Purinas/biosíntesis , Purinas/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Transcetolasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Gastroenterology ; 162(4): 1303-1318.e18, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34973294

RESUMEN

BACKGROUND & AIMS: RNF43 is an E3 ubiquitin ligase that is recurrently mutated in pancreatic ductal adenocarcinoma (PDAC) and precursor cystic neoplasms of the pancreas. The impact of RNF43 mutations on PDAC is poorly understood and autochthonous models have not been characterized sufficiently. In this study, we describe a genetically engineered mouse model (GEMM) of PDAC with conditional expression of oncogenic Kras and deletion of the catalytic domain of Rnf43 in exocrine cells. METHODS: We generated Ptf1a-Cre;LSL-KrasG12D;Rnf43flox/flox (KRC) and Ptf1a-Cre; LSL-KrasG12D (KC) mice and animal survival was assessed. KRC mice were sacrificed at 2 months, 4 months, and at moribund status followed by analysis of pancreata by single-cell RNA sequencing. Comparative analyses between moribund KRC and a moribund Kras/Tp53-driven PDAC GEMM (KPC) was performed. Cell lines were isolated from KRC and KC tumors and interrogated by cytokine array analyses, ATAC sequencing, and in vitro drug assays. KRC GEMMs were also treated with an anti-CTLA4 neutralizing antibody with treatment response measured by magnetic response imaging. RESULTS: We demonstrate that KRC mice display a marked increase in incidence of high-grade cystic lesions of the pancreas and PDAC compared with KC. Importantly, KRC mice have a significantly decreased survival compared with KC mice. Using single-cell RNA sequencing, we demonstrated that KRC tumor progression is accompanied by a decrease in macrophages, as well as an increase in T and B lymphocytes, with evidence of increased immune checkpoint molecule expression and affinity maturation, respectively. This was in stark contrast to the tumor immune microenvironment observed in the KPC PDAC GEMM. Furthermore, expression of the chemokine CXCL5 was found to be specifically decreased in KRC cancer cells by means of epigenetic regulation and emerged as a putative candidate for mediating the unique KRC immune landscape. CONCLUSIONS: The KRC GEMM establishes RNF43 as a bona fide tumor suppressor gene in PDAC. This GEMM features a markedly different immune microenvironment compared with previously reported PDAC GEMMs and puts forth a rationale for an immunotherapy approach in this subset of PDAC cases.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ubiquitina-Proteína Ligasas , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Epigénesis Genética , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral , Ubiquitina-Proteína Ligasas/genética , Neoplasias Pancreáticas
3.
Mol Cell Proteomics ; 20: 100094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33991687

RESUMEN

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.


Asunto(s)
Cardiomiopatías/metabolismo , Ataxia de Friedreich/metabolismo , Retinoides/metabolismo , Adolescente , Adulto , Anciano , Aldehído Oxidorreductasas/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Proteínas de Unión a Hierro/metabolismo , Masculino , Persona de Mediana Edad , Análisis por Matrices de Proteínas , Proteómica , Adulto Joven , Frataxina
4.
Development ; 146(23)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704792

RESUMEN

The number and quality of oocytes within the ovarian reserve largely determines fertility and reproductive lifespan in mammals. An oocyte-specific transcription factor cascade controls oocyte development, and some of these transcription factors, such as newborn ovary homeobox gene (NOBOX), are candidate genes for primary ovarian insufficiency in women. Transcription factors are frequently modified by the post-translational modification SUMOylation, but it is not known whether SUMOylation is required for function of the oocyte-specific transcription factors or if SUMOylation is required in oocytes during their development within the ovarian follicle. To test this, the sole E2 SUMO-conjugating enzyme, Ube2i, was ablated in mouse oocytes beginning in primordial follicles. Loss of oocyte Ube2i resulted in female infertility with major defects in stability of the primordial follicle pool, ovarian folliculogenesis, ovulation and meiosis. Transcriptomic profiling of ovaries suggests that loss of oocyte Ube2i caused defects in both oocyte- and granulosa cell-expressed genes, including NOBOX and some of its known target genes. Together, these studies show that SUMOylation is required in the mammalian oocyte during folliculogenesis for both oocyte development and communication with ovarian somatic cells.


Asunto(s)
Comunicación Celular , Células de la Granulosa , Infertilidad Femenina , Oocitos/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/deficiencia , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Infertilidad Femenina/embriología , Infertilidad Femenina/genética , Infertilidad Femenina/patología , Ratones , Ratones Noqueados , Oocitos/patología , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
Eur Respir J ; 60(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35169026

RESUMEN

BACKGROUND: In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS: A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION: These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.


Asunto(s)
Transcriptoma , Tuberculosis , Citocinas , Humanos , Inflamación , ARN , Tuberculosis/genética
6.
Cytokine ; 160: 156022, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099756

RESUMEN

Although conventional knockout and transgenic mouse models have significantly advanced our understanding of Receptor Activator of NF-κB Ligand (RANKL) signaling in intra-thymic crosstalk that establishes self-tolerance and later stages of lymphopoiesis, the unique advantages of conditional mouse transgenesis have yet to be explored. A main advantage of conditional transgenesis is the ability to express a transgene in a spatiotemporal restricted manner, enabling the induction (or de-induction) of transgene expression during predetermined stages of embryogenesis or during defined postnatal developmental or physiological states, such as puberty, adulthood, and pregnancy. Here, we describe the K5: RANKL bigenic mouse, in which transgene derived RANKL expression is induced by doxycycline and targeted to cytokeratin 5 positive medullary thymic epithelial cells (mTECs). Short-term doxycycline induction reveals that RANKL transgene expression is significantly induced in the thymic medulla and only in response to doxycycline. Prolonged doxycycline induction in the K5: RANKL bigenic results in a significantly enlarged thymus in which mTECs are hyperproliferative. Flow cytometry showed that there is a marked enrichment of CD4+ and CD8+ single positive thymocytes with a concomitant depletion of CD4+ CD8+ double positives. Furthermore, there is an increase in the number of FOXP3+ T regulatory (Treg) cells and Ulex Europaeus Agglutinin 1+ (UEA1+) mTECs. Transcriptomics revealed that a remarkable array of signals-cytokines, chemokines, growth factors, transcription factors, and morphogens-are governed by RANKL and drive in part the K5: RANKL thymic phenotype. Extended doxycycline administration to 6-weeks results in a K5: RANKL thymus that begins to display distinct histopathological features, such as medullary epithelial hyperplasia, extensive immune cell infiltration, and central tissue necrosis. As there are intense efforts to develop clinical approaches to restore thymic medullary function in the adult to treat immunopathological conditions in which immune cell function is compromised following cancer therapy or toxin exposure, an improved molecular understanding of RANKL's involvement in thymic medulla enlargement will be required. We believe the versatility of the conditional K5: RANKL mouse represents a tractable model system to assist in addressing this requirement as well as many other questions related to RANKL's role in thymic normal physiology and disease processes.


Asunto(s)
Doxiciclina , Ligando RANK/metabolismo , Transcriptoma , Aglutininas/metabolismo , Animales , Citocinas/metabolismo , Doxiciclina/farmacología , Células Epiteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Ligandos , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Fenotipo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Timo/metabolismo
7.
Pancreatology ; 22(7): 965-972, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36008214

RESUMEN

BACKGROUND: Recent advances on pancreatic cancer molecular classifications have identified several subtypes with distinct characteristics, treatment response, and prognosis. We aim to identify the consensus gene signature that could predict the prognosis of pancreatic cancer. METHODS: Transcriptomic data was acquired from TCGA database. Differentially expressed genes (DEGs) were identified by comparing the Basal-like, Quasi-mesenchymal and Squamous subtype to other subtypes. A new model was constructed by the least absolute shrinkage and selection operator to stratify patients into high and low-risk groups. The prognosis, transcriptomic profiles, and immune infiltration were examined between these groups. RESULTS: We constructed a signature consisting of nine genes, and the GSEA analysis showed that the genomic profile of high-risk tumors is associated with the basal-like and squamous gene set enrichment. Patients with high-risk tumors had worse overall survival (P < 0.001) and progression free survival (P = 0.033), and are associated with a higher expression of KRAS downstream targets such as SDC1, ITGB4 and SLC2A1, which are involved in KRAS mediated macropinocytosis and tumor invasion. Meanwhile, several recurrence-associated genes increased in the high-risk tumors, including ITGA3 and TP63, which have been shown to mediate enhancer-dependent genomic reprogramming towards the squamous phenotype. The tumor immune infiltration profile analysis showed that high-risk tumors are characterized with an immune suppressive microenvironment. CONCLUSION: The integrative transcriptomic analysis identifies a consensus gene signature that can discriminate pancreatic cancer subtypes and determine patient prognosis by evaluating the genomic reprogramming and the level of immune infiltration profile in pancreatic cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Humanos , Transcriptoma , Proteínas Proto-Oncogénicas p21(ras)/genética , Pronóstico , Neoplasias Pancreáticas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Microambiente Tumoral/genética , Neoplasias Pancreáticas
8.
Circulation ; 141(1): 42-66, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31887080

RESUMEN

BACKGROUND: Sporadic aortic aneurysm and dissection (AAD), caused by progressive aortic smooth muscle cell (SMC) loss and extracellular matrix degradation, is a highly lethal condition. Identifying mechanisms that drive aortic degeneration is a crucial step in developing an effective pharmacologic treatment to prevent disease progression. Recent evidence has indicated that cytosolic DNA and abnormal activation of the cytosolic DNA sensing adaptor STING (stimulator of interferon genes) play a critical role in vascular inflammation and destruction. Here, we examined the involvement of this mechanism in aortic degeneration and sporadic AAD formation. METHODS: The presence of cytosolic DNA in aortic cells and activation of the STING pathway were examined in aortic tissues from patients with sporadic ascending thoracic AAD. The role of STING in AAD development was evaluated in Sting-deficient (Stinggt/gt) mice in a sporadic AAD model induced by challenging mice with a combination of a high-fat diet and angiotensin II. We also examined the direct effects of STING on SMC death and macrophage activation in vitro. RESULTS: In human sporadic AAD tissues, we observed the presence of cytosolic DNA in SMCs and macrophages and significant activation of the STING pathway. In the sporadic AAD model, Stinggt/gt mice showed significant reductions in challenge-induced aortic enlargement, dissection, and rupture in both the thoracic and abdominal aortic regions. Single-cell transcriptome analysis revealed that aortic challenge in wild-type mice induced the DNA damage response, the inflammatory response, dedifferentiation and cell death in SMCs, and matrix metalloproteinase expression in macrophages. These changes were attenuated in challenged Stinggt/gt mice. Mechanistically, nuclear and mitochondrial DNA damage in SMCs and the subsequent leak of DNA to the cytosol activated STING signaling, which induced cell death through apoptosis and necroptosis. In addition, DNA from damaged SMCs was engulfed by macrophages in which it activated STING and its target interferon regulatory factor 3, which directly induced matrix metalloproteinase-9 expression. We also found that pharmacologically inhibiting STING activation partially prevented AAD development. CONCLUSIONS: Our findings indicate that the presence of cytosolic DNA and subsequent activation of cytosolic DNA sensing adaptor STING signaling represent a key mechanism in aortic degeneration and that targeting STING may prevent sporadic AAD development.


Asunto(s)
Disección Aórtica/metabolismo , Rotura de la Aorta/metabolismo , Citosol/metabolismo , ADN/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Disección Aórtica/genética , Disección Aórtica/patología , Animales , Rotura de la Aorta/genética , Rotura de la Aorta/patología , Citosol/patología , ADN/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados
9.
Clin Immunol ; 230: 108820, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365017

RESUMEN

BACKGROUND: Peanut oral immunotherapy (POIT) has provided desensitization to peanut allergic individuals. Limited immunological evaluation exists during the first 24-weeks of POIT. OBJECTIVE: Regulatory T-cells (Tregs) are antigen induced immunosuppressive T-cells important in establishing tolerance. Delineation of early immunologic changes contributing to the development of peanut desensitization would help clarify the mechanism of action in POIT. We performed single-cell RNA sequencing (scRNAseq) on Tregs in pediatric subjects undergoing POIT during the first 24-weeks of therapy to evaluate early immunological changes induced by POIT. METHODS: PBMC samples from peanut allergic subjects between 5 and 12 years of age enrolled in a Phase 1/2a POIT study were collected and analyzed at 0, 6, and 24-weeks after POIT initiation and samples were compared to healthy non-peanut allergic controls. Tregs were enriched from PBMCs and scRNAseq analysis performed. Cell Ranger 3.1.0 (10× Genomics) was utilized to identify cell clusters and differentially expressed genes, and results were analyzed with Seurat suite version 3.0.0. RESULTS: Gene analysis revealed 10 major clusters corresponding to different cell types observed to change during POIT when compared to the healthy, non-peanut-allergic state. scRNAseq analysis of Tregs revealed strong CD3G expression correlating with gdTregs. scRNAseq analysis of gdTregs revealed dynamic changes occurring within the first 6-weeks of treatment and cell frequencies of naïve and memory gdTregs at 24-weeks of treatment reducing to levels similar to healthy controls. Analysis of transcriptomic cell identity analysis using SingleR showed gene expression in gdTregs similar to healthy control after 24-weeks of POIT treatment. scRNAseq analysis revealed alterations in gene expression for memory and naïve gdTregs during this timeframe. Specifically, expression of OX40R (TNFRSF4), GITR (TNFRSF18), TGFB1, CTLA4, ISG20, CD69 were upregulated in memory gdTregs compared to naive gdTregs by 24-weeks of POIT, while IL7R and SELL were downregulated in memory gdTregs compared to naïve gdTregs. CONCLUSIONS: There are specific expression profiles of peripheral naïve and mature gdTreg cells in peanut allergic patients undergoing POIT in the first 24-weeks of treatment implicating pathways involved in maintenance of immune homeostasis. gdTreg cells may contribute to the tolerogenic effect of POIT within the first 24-weeks of POIT treatment. These findings suggest that gdTregs cells may be an early marker of desensitization in subjects undergoing POIT.


Asunto(s)
Arachis/inmunología , Desensibilización Inmunológica/métodos , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T , Genes Codificadores de la Cadena gamma de los Receptores de Linfocito T , Hipersensibilidad al Cacahuete/terapia , Linfocitos T Reguladores/inmunología , Administración Oral , Alérgenos/administración & dosificación , Niño , Preescolar , Humanos , Memoria Inmunológica , Familia de Multigenes , Hipersensibilidad al Cacahuete/genética , Hipersensibilidad al Cacahuete/inmunología , RNA-Seq , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Análisis de la Célula Individual , Factores de Tiempo , Transcriptoma
10.
Am J Physiol Gastrointest Liver Physiol ; 320(3): G366-G379, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470189

RESUMEN

Activation of mitogen-activated protein kinases (MAPKs) is a key factor in the pathogenesis of cancer, although the specific role of mitogen-activated protein kinase kinase (MEK1) is not well understood. Villin promoter-driven Cre expression was used to excise a floxed stop cassette from a phosphomimetically constitutively activated MEK1 (caMEK1) expression construct in the intestine of C57BL/6 mice. Zygosity status of caMEK1 afforded assessment of the dose dependence of the effect. The expected mendelian distribution of genotypes and sex was observed in 443 progenies. Between 21 and 63 days of life, caMEK1 had no effect on body weight in male mice, but reduced body weight in female mice homozygous for caMEK1. At 10 wk of age, the ileum of caMEK1-expressing mice was characterized by the finding of dysplasia and profound changes in overall architecture. Paneth cells were nearly absent in caMEK1 homozygotes. Targeted proteomic profiling via reverse phase protein array analyses with confirmatory Western blotting revealed significant changes in protein and phosphoprotein expression, including upregulation of proteins downstream of MEK1, associated with enhanced markers of proliferation, diminished apoptosis, alterations in cell-fate determination, cell-cell interactions, and tight junctions. Long-term viability of caMEK1 homozygous mice was reduced with no survival beyond 1 yr. Invasive adenocarcinoma developed in three of ten older mice [15 wk (homozygous), 26 wk (homozygous), and 35 wk (heterozygous) of age]. Expression of caMEK1 in enterocytes leads to marked derangements in the intestinal epithelium, which is associated with a predisposition to the development of invasive cancer.NEW & NOTEWORTHY The ileum of mice with constitutive expression of activated MEK1 (via phosphomimetic changes) in enterocytes is markedly abnormal with architectural distortion and cytologic atypia, which evolves into an adenoma invasive carcinoma sequence. Phosphoproteomic analysis reveals upregulation of proteins downstream of MEK1, associated with enhanced markers of proliferation, diminished apoptosis, alterations in cell-fate determination, cell-cell interactions, and tight junctions. This novel model provides new insights into intestinal homeostasis and carcinogenesis.


Asunto(s)
Enterocitos/metabolismo , Íleon/citología , Neoplasias Intestinales/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Neoplasias Intestinales/genética , Longevidad , MAP Quinasa Quinasa 1/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones
11.
Blood ; 134(1): 59-73, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31023702

RESUMEN

RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.


Asunto(s)
Antineoplásicos/farmacología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/antagonistas & inhibidores , Leucemia Mieloide Aguda/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Técnicas de Silenciamiento del Gen , Mutación de Línea Germinal , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Ratones
12.
Nature ; 517(7536): 626-30, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25409149

RESUMEN

TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the ΔN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the ΔN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the ß cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Linfoma/metabolismo , Linfoma/patología , Proteína p53 Supresora de Tumor/deficiencia , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Genes Supresores de Tumor , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/uso terapéutico , Linfoma/tratamiento farmacológico , Linfoma/genética , Masculino , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Receptores de Calcitonina/metabolismo , Timo/metabolismo , Timo/patología , Transactivadores/genética , Transactivadores/metabolismo , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Am J Physiol Endocrinol Metab ; 319(4): E667-E677, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32799658

RESUMEN

MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.


Asunto(s)
Adipocitos Marrones/fisiología , Redes Reguladoras de Genes/genética , MicroARNs/fisiología , Adipocitos Blancos/metabolismo , Animales , Glucemia/metabolismo , Células Cultivadas , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/genética , Metabolómica , Ratones , MicroARNs/genética , Oligopéptidos/metabolismo , Biogénesis de Organelos , PPAR gamma/agonistas , Rosiglitazona/farmacología
14.
Hum Mol Genet ; 27(16): 2789-2804, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29771332

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multi-systemic disease resulting in severe muscle weakening and wasting. DM1 is caused by expansion of CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. We have developed an inducible, skeletal muscle-specific mouse model of DM1 (CUG960) that expresses 960 CUG repeat-expressing animals (CUG960) in the context of human DMPK exons 11-15. CUG960 RNA-expressing mice induced at postnatal day 1, as well as adult-onset animals, show clear, measurable muscle wasting accompanied by severe histological defects including central myonuclei, reduced fiber cross-sectional area, increased percentage of oxidative myofibers, the presence of nuclear RNA foci that colocalize with Mbnl1 protein, and increased Celf1 protein in severely affected muscles. Importantly, muscle loss, histological abnormalities and RNA foci are reversible, demonstrating recovery upon removal of toxic RNA. RNA-seq and protein array analysis indicate that the balance between anabolic and catabolic pathways that normally regulate muscle mass may be disrupted by deregulation of platelet derived growth factor receptor ß signaling and the PI3K/AKT pathways, along with prolonged activation of AMP-activated protein kinase α signaling. Similar changes were detected in DM1 skeletal muscle compared with unaffected controls. The mouse model presented in this paper shows progressive skeletal muscle wasting and has been used to identify potential molecular mechanisms underlying skeletal muscle loss. The reversibility of the phenotype establishes a baseline response for testing therapeutic approaches.


Asunto(s)
Debilidad Muscular/genética , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Animales , Secuencia de Bases , Proteínas CELF1 , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Humanos , Ratones , Debilidad Muscular/patología , Músculo Esquelético/fisiopatología , Distrofia Miotónica/patología , Proteínas de Unión al ARN , Expansión de Repetición de Trinucleótido
15.
J Immunol ; 201(1): 124-133, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752313

RESUMEN

Epigenetic mechanisms, such as DNA methylation, determine immune cell phenotype. To understand the epigenetic alterations induced by helminth coinfections, we evaluated the longitudinal effect of ascariasis and schistosomiasis infection on CD4+ T cell DNA methylation and the downstream tuberculosis (TB)-specific and bacillus Calmette-Guérin-induced immune phenotype. All experiments were performed on human primary immune cells from a longitudinal cohort of recently TB-exposed children. Compared with age-matched uninfected controls, children with active Schistosoma haematobium and Ascaris lumbricoides infection had 751 differentially DNA-methylated genes, with 72% hypermethylated. Gene ontology pathway analysis identified inhibition of IFN-γ signaling, cellular proliferation, and the Th1 pathway. Targeted real-time quantitative PCR after methyl-specific endonuclease digestion confirmed DNA hypermethylation of the transcription factors BATF3, ID2, STAT5A, IRF5, PPARg, RUNX2, IRF4, and NFATC1 and cytokines or cytokine receptors IFNGR1, TNFS11, RELT (TNF receptor), IL12RB2, and IL12B (p < 0.001; Sidak-Bonferroni). Functional blockage of the IFN-γ signaling pathway was confirmed, with helminth-infected individuals having decreased upregulation of IFN-γ-inducible genes (Mann-Whitney p < 0.05). Hypomethylation of the IL-4 pathway and DNA hypermethylation of the Th1 pathway was confirmed by Ag-specific multidimensional flow cytometry demonstrating decreased TB-specific IFN-γ and TNF and increased IL-4 production by CD4+ T cells (Wilcoxon signed-rank p < 0.05). In S. haematobium-infected individuals, these DNA methylation and immune phenotypic changes persisted at least 6 mo after successful deworming. This work demonstrates that helminth infection induces DNA methylation and immune perturbations that inhibit TB-specific immune control and that the duration of these changes are helminth specific.


Asunto(s)
Ascariasis/inmunología , Ascaris lumbricoides/inmunología , Vacuna BCG/inmunología , Metilación de ADN/genética , Schistosoma haematobium/inmunología , Esquistosomiasis/inmunología , Células TH1/inmunología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/biosíntesis , Interleucina-4/genética , Receptores de Citocinas/genética , Factores de Transcripción/genética , Tuberculosis/inmunología
17.
Carcinogenesis ; 40(11): 1332-1340, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31284295

RESUMEN

Racial/ethnic disparities have a significant impact on bladder cancer outcomes with African American patients demonstrating inferior survival over European-American patients. We hypothesized that epigenetic difference in methylation of tumor DNA is an underlying cause of this survival health disparity. We analyzed bladder tumors from African American and European-American patients using reduced representation bisulfite sequencing (RRBS) to annotate differentially methylated DNA regions. Liquid chromatography-mass spectrometry (LC-MS/MS) based metabolomics and flux studies were performed to examine metabolic pathways that showed significant association to the discovered DNA methylation patterns. RRBS analysis showed frequent hypermethylated CpG islands in African American patients. Further analysis showed that these hypermethylated CpG islands in patients are commonly located in the promoter regions of xenobiotic enzymes that are involved in bladder cancer progression. On follow-up, LC-MS/MS revealed accumulation of glucuronic acid, S-adenosylhomocysteine, and a decrease in S-adenosylmethionine, corroborating findings from the RRBS and mRNA expression analysis indicating increased glucuronidation and methylation capacities in African American patients. Flux analysis experiments with 13C-labeled glucose in cultured African American bladder cancer cells confirmed these findings. Collectively, our studies revealed robust differences in methylation-related metabolism and expression of enzymes regulating xenobiotic metabolism in African American patients indicate that race/ethnic differences in tumor biology may exist in bladder cancer.


Asunto(s)
Islas de CpG , Metilación de ADN , Inactivación Metabólica/genética , Neoplasias de la Vejiga Urinaria/genética , Negro o Afroamericano/genética , Cromatografía Liquida , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Ácido Glucurónico/análisis , Ácido Glucurónico/metabolismo , Humanos , Metabolómica , Regiones Promotoras Genéticas , S-Adenosilhomocisteína/análisis , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/análisis , S-Adenosilmetionina/metabolismo , Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria/metabolismo , Población Blanca/genética
18.
Cancer ; 125(14): 2409-2422, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31012964

RESUMEN

BACKGROUND: Over 96% of high-grade ovarian carcinomas and 50% of all cancers are characterized by alterations in the p53 gene. Therapeutic strategies to restore and/or reactivate the p53 pathway have been challenging. By contrast, p63, which shares many of the downstream targets and functions of p53, is rarely mutated in cancer. METHODS: A novel strategy is presented for circumventing alterations in p53 by inducing the tumor-suppressor isoform TAp63 (transactivation domain of tumor protein p63) through its direct downstream target, microRNA-130b (miR-130b), which is epigenetically silenced and/or downregulated in chemoresistant ovarian cancer. RESULTS: Treatment with miR-130b resulted in: 1) decreased migration/invasion in HEYA8 cells (p53 wild-type) and disruption of multicellular spheroids in OVCAR8 cells (p53-mutant) in vitro, 2) sensitization of HEYA8 and OVCAR8 cells to cisplatin (CDDP) in vitro and in vivo, and 3) transcriptional activation of TAp63 and the B-cell lymphoma (Bcl)-inhibitor B-cell lymphoma 2-like protein 11 (BIM). Overexpression of TAp63 was sufficient to decrease cell viability, suggesting that it is a critical downstream effector of miR-130b. In vivo, combined miR-130b plus CDDP exhibited greater therapeutic efficacy than miR-130b or CDDP alone. Mice that carried OVCAR8 xenograft tumors and were injected with miR-130b in 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) liposomes had a significant decrease in tumor burden at rates similar to those observed in CDDP-treated mice, and 20% of DOPC-miR-130b plus CDDP-treated mice were living tumor free. Systemic injections of scL-miR-130b plus CDDP in a clinically tested, tumor-targeted nanocomplex (scL) improved survival in 60% and complete remissions in 40% of mice that carried HEYA8 xenografts. CONCLUSIONS: The miR-130b/TAp63 axis is proposed as a new druggable pathway that has the potential to uncover broad-spectrum therapeutic options for the majority of p53-altered cancers.


Asunto(s)
MicroARNs/uso terapéutico , Mutación Missense , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Liposomas , Ratones , Ratones Desnudos , MicroARNs/administración & dosificación , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/prevención & control , Isoformas de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Transfección , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cytokine ; 123: 154745, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31226438

RESUMEN

Although salivary gland cancers comprise only ∼3-6% of head and neck cancers, treatment options for patients with advanced-stage disease are limited. Because of their rarity, salivary gland malignancies are understudied compared to other exocrine tissue cancers. The comparative lack of progress in this cancer field is particularly evident when it comes to our incomplete understanding of the key molecular signals that are causal for the development and/or progression of salivary gland cancers. Using a novel conditional transgenic mouse (K5:RANKL), we demonstrate that Receptor Activator of NFkB Ligand (RANKL) targeted to cytokeratin 5-positive basal epithelial cells of the salivary gland causes aggressive tumorigenesis within a short period of RANKL exposure. Genome-wide transcriptomic analysis reveals that RANKL markedly increases the expression levels of numerous gene families involved in cellular proliferation, migration, and intra- and extra-tumoral communication. Importantly, cross-species comparison of the K5:RANKL transcriptomic dataset with The Cancer Genome Atlas cancer signatures reveals the strongest molecular similarity with cancer subtypes of the human head and neck squamous cell carcinoma. These studies not only provide a much needed transcriptomic resource to mine for novel molecular targets for therapy and/or diagnosis but validates the K5:RANKL transgenic as a preclinical model to further investigate the in vivo oncogenic role of RANKL signaling in salivary gland tumorigenesis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Ligando RANK/metabolismo , Neoplasias de las Glándulas Salivales/metabolismo , Glándulas Salivales/metabolismo , Transcripción Genética , Transcriptoma , Animales , Epitelio/metabolismo , Epitelio/patología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Ligando RANK/genética , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Glándulas Salivales/patología
20.
J Mammary Gland Biol Neoplasia ; 23(4): 237-248, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30338425

RESUMEN

Ductal carcinoma in situ (DCIS) is a non-obligate precursor to most types of invasive breast cancer (IBC). Although it is estimated only one third of untreated patients with DCIS will progress to IBC, standard of care for treatment is surgery and radiation. This therapeutic approach combined with a lack of reliable biomarker panels to predict DCIS progression is a major clinical problem. DCIS shares the same molecular subtypes as IBC including estrogen receptor (ER) and progesterone receptor (PR) positive luminal subtypes, which encompass the majority (60-70%) of DCIS. Compared to the established roles of ER and PR in luminal IBC, much less is known about the roles and mechanism of action of estrogen (E2) and progesterone (P4) and their cognate receptors in the development and progression of DCIS. This is an underexplored area of research due in part to a paucity of suitable experimental models of ER+/PR + DCIS. This review summarizes information from clinical and observational studies on steroid hormones as breast cancer risk factors and ER and PR as biomarkers in DCIS. Lastly, we discuss emerging experimental models of ER+/PR+ DCIS.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Carcinoma Intraductal no Infiltrante/diagnóstico , Carcinoma Intraductal no Infiltrante/terapia , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estrógenos/metabolismo , Femenino , Humanos , Invasividad Neoplásica/patología , Estudios Observacionales como Asunto , Valor Predictivo de las Pruebas , Progesterona/metabolismo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA