Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011844, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060615

RESUMEN

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS)-known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Acute infection led to marked imbalance in the CNS CD4/CD8 ratio which persisted into the chronic phase. These observations underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our findings offer insights for potential T cell-focused interventions while underscoring the challenges in eradicating HIV from the CNS, particularly in the context of sub-optimal ART.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Linfocitos T CD4-Positivos , Virus de la Inmunodeficiencia de los Simios/fisiología , Macaca mulatta , Sistema Nervioso Central , Carga Viral
2.
Nucleic Acids Res ; 51(20): 11258-11276, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37791873

RESUMEN

Mutations in the Fused in Sarcoma (FUS) gene cause the familial and progressive form of amyotrophic lateral sclerosis (ALS). FUS is a nuclear RNA-binding protein involved in RNA processing and the biogenesis of a specific set of microRNAs. Here we report that Drosha and two previously uncharacterized Drosha-dependent miRNAs are strong modulators of FUS expression and prevent the cytoplasmic segregation of insoluble mutant FUS in vivo. We demonstrate that depletion of Drosha mitigates FUS-mediated degeneration, survival and motor defects in Drosophila. Mutant FUS strongly interacts with Drosha and causes its cytoplasmic mis-localization into the insoluble FUS inclusions. Reduction in Drosha levels increases the solubility of mutant FUS. Interestingly, we found two Drosha dependent microRNAs, miR-378i and miR-6832-5p, which differentially regulate the expression, solubility and cytoplasmic aggregation of mutant FUS in iPSC neurons and mammalian cells. More importantly, we report different modes of action of these miRNAs against mutant FUS. Whereas miR-378i may regulate mutant FUS inclusions by preventing G3BP-mediated stress granule formation, miR-6832-5p may affect FUS expression via other proteins or pathways. Overall, our research reveals a possible association between ALS-linked FUS mutations and the Drosha-dependent miRNA regulatory circuit, as well as a useful perspective on potential ALS treatment via microRNAs.


Asunto(s)
Proteínas de Drosophila , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H , MicroARNs , Ribonucleasa III , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Drosophila/genética , Drosophila/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Ribonucleasa III/metabolismo , Proteínas de Drosophila/metabolismo
3.
J Virol ; 97(1): e0144222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36541803

RESUMEN

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Asunto(s)
Encefalitis Viral , Neuronas , Infecciones por Reoviridae , Reoviridae , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Quimiocinas/inmunología , Encefalitis Viral/inmunología , Encefalitis Viral/virología , Neuronas/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Reoviridae/inmunología , Reoviridae/patogenicidad , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
4.
J Infect Dis ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37665976

RESUMEN

Cell-based quadrivalent inactivated influenza vaccine has been shown to have higher vaccine effectiveness than traditional egg-based quadrivalent inactivated influenza vaccine. This is observed despite similar levels of serum hemagglutinin antibodies induced by each vaccine. Here, we examine peripheral immune activation following egg-based or cell-based influenza vaccination in a clinical trial in children. Peripheral blood mononuclear cells were isolated and RNA sequenced from 81 study participants (41 Fluzone, egg-based and 40 Flucelvax, cell based) pre- and 7 days post- vaccination. Seroconversion was assessed by hemagglutinin inhibition assay. Differential gene expression was determined and pathway analysis was conducted. Cell-based influenza vaccine induced greater interferon stimulated and innate immune gene activation compared with egg-based influenza vaccine. Participants who seroconverted had increased interferon signaling activation versus those who did not seroconvert. These data suggest that cell-based influenza vaccine stimulates immune activation differently from egg-based influenza vaccine, shedding light on reported differences in vaccine effectiveness.

5.
J Hepatol ; 79(6): 1385-1395, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572794

RESUMEN

BACKGROUND & AIMS: Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS: We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS: A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS: BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS: Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.


Asunto(s)
Atresia Biliar , Niño , Animales , Ratones , Humanos , Atresia Biliar/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Pez Cebra/genética , Canadá
6.
Acta Neuropathol ; 146(3): 477-498, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37369805

RESUMEN

GEMIN5 is essential for core assembly of small nuclear Ribonucleoproteins (snRNPs), the building blocks of spliceosome formation. Loss-of-function mutations in GEMIN5 lead to a neurodevelopmental syndrome among patients presenting with developmental delay, motor dysfunction, and cerebellar atrophy by perturbing SMN complex protein expression and assembly. Currently, molecular determinants of GEMIN5-mediated disease have yet to be explored. Here, we identified SMN as a genetic suppressor of GEMIN5-mediated neurodegeneration in vivo. We discovered that an increase in SMN expression by either SMN gene therapy replacement or the antisense oligonucleotide (ASO), Nusinersen, significantly upregulated the endogenous levels of GEMIN5 in mammalian cells and mutant GEMIN5-derived iPSC neurons. Further, we identified a strong functional association between the expression patterns of SMN and GEMIN5 in patient Spinal Muscular Atrophy (SMA)-derived motor neurons harboring loss-of-function mutations in the SMN gene. Interestingly, SMN binds to the C-terminus of GEMIN5 and requires the Tudor domain for GEMIN5 binding and expression regulation. Finally, we show that SMN upregulation ameliorates defective snRNP biogenesis and alternative splicing defects caused by loss of GEMIN5 in iPSC neurons and in vivo. Collectively, these studies indicate that SMN acts as a regulator of GEMIN5 expression and neuropathologies.


Asunto(s)
Atrofia Muscular Espinal , Proteínas de Unión al ARN , Humanos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/genética , Dominio Tudor
7.
Plant J ; 107(1): 100-117, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864651

RESUMEN

Flooding and drought are serious constraints that reduce crop productivity worldwide. Previous studies identified genes conferring tolerance to both water extremes in various plants. However, overlapping responses to flooding and drought at the genome-scale remain obscure. Here, we defined overlapping and stress-specific transcriptomic and hormonal responses to submergence, drought and recovery from these stresses in soybean (Glycine max). We performed comparative RNA-sequencing and hormone profiling, identifying genes, hormones and biological processes that are differentially regulated in an overlapping or stress-specific manner. Overlapping responses included positive regulation of trehalose and sucrose metabolism and negative regulation of cellulose, tubulin, photosystem II and I, and chlorophyll biosynthesis, facilitating the economization of energy reserves under both submergence and drought. Additional energy-consuming pathways were restricted in a stress-specific manner. Downregulation of distinct pathways for energy saving under each stress suggests energy-consuming processes that are relatively unnecessary for each stress adaptation are turned down. Our newly developed transcriptomic-response analysis revealed that abscisic acid and ethylene responses were activated in common under both stresses, whereas stimulated auxin response was submergence-specific. The energy-saving strategy is the key overlapping mechanism that underpins adaptation to both submergence and drought in soybean. Abscisic acid and ethylene are candidate hormones that coordinate transcriptomic energy-saving processes under both stresses. Auxin may be a signaling component that distinguishes submergence-specific regulation of the stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/fisiología , Reguladores del Crecimiento de las Plantas/genética , Estrés Fisiológico/fisiología , Ácido Abscísico/metabolismo , Sequías , Etilenos/metabolismo , Inundaciones , Ontología de Genes , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética
8.
J Inherit Metab Dis ; 45(3): 541-556, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076099

RESUMEN

Inherited errors of mitochondrial fatty acid ß-oxidation (FAO) are life threatening, even with optimum care. FAO is the major source of energy for heart and is critical for skeletal muscles especially during physiologic stress. Clinical trials revealed that triheptanoin (commercially known as Dojolvi; C7G), improved heart function and decreased hypoglycemia in long chain FAO disorders, but other symptoms including rhabdomyolysis persisted, suggesting suboptimal tissue distribution/utilization of heptanoic acid (C7) conjugates and/or rapid liver breakdown. In this study, medium branched chain fatty acids were tested as potential anaplerotic treatments in fibroblasts from patients deficient in very long chain acyl-CoA dehydrogenase (VLCAD), long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), trifunctional protein (TFP), and carnitine palmitoyltransferase II (CPT II). Cells were cultured to near confluency and treated with C7, 2,6-dimethylheptanoic acid (dMC7), 6-amino-2,4-dimethylheptanoic acid (AdMC7), or 4,8-dimethylnonanoic acid (dMC9) for 72 h and targeted metabolomics performed. The profile of TCA cycle intermediates was improved in cells treated with these branched chain fatty acids compared with C7. Intracellular propionate was higher in AdMC7 treated cells compared with C7 in VLCAD, LCHAD, and TFP deficient cell lines. With AdMC7 treatment, succinate was higher in CPT II and VLCAD deficient cells, compared with C7. Malate and glutamate were consistently higher in AdMC7 treated VLCAD, LCHAD, TFP, and CPT II deficient cells compared with the C7 treatment. The results provide the impetus to further evaluate and consider branched chain fatty acids as viable anaplerotic therapy for fatty acid oxidation disorders and other diseases.


Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga , Errores Innatos del Metabolismo Lipídico , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ciclo del Ácido Cítrico , Ácidos Grasos/metabolismo , Humanos , Errores Innatos del Metabolismo Lipídico/metabolismo , Oxidación-Reducción
9.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743153

RESUMEN

Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Enfermedad de la Arteria Coronaria/complicaciones , Femenino , Isquemia/complicaciones , Metabolómica , Isquemia Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Reperfusión/efectos adversos , Porcinos , Porcinos Enanos
10.
Acta Neuropathol ; 142(3): 515-536, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34061233

RESUMEN

Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , ARN Helicasas DEAD-box/genética , Reparación del ADN/genética , Proteína FUS de Unión a ARN/toxicidad , Animales , Línea Celular , Gránulos Citoplasmáticos/química , Daño del ADN , Drosophila , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/genética , Análisis de Secuencia de ARN
11.
Ann Bot ; 114(6): 1109-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25149544

RESUMEN

BACKGROUND AND AIMS: A key challenge in biology is to systematically investigate and integrate the different levels of information available at the global and single-cell level. Recent studies have elucidated spatiotemporal expression patterns of root cell types in Arabidopsis thaliana, and genome-wide quantification of polysome-associated mRNA levels, i.e. the translatome, has also been obtained for corresponding cell types. Translational control has been increasingly recognized as an important regulatory step in protein synthesis. The aim of this study was to investigate coupled transcription and translation by use of publicly available root datasets. METHODS: Using cell-type-specific datasets of the root transcriptome and translatome of arabidopsis, a systematic assessment was made of the degree of co-ordination and divergence between these two levels of cellular organization. The computational analysis considered correlation and variation of expression across cell types at both system levels, and also provided insights into the degree of co-regulatory relationships that are preserved between the two processes. KEY RESULTS: The overall correlation of expression and translation levels of genes resemble an almost bimodal distribution (mean/median value of 0·08/0·12), with a second, less strongly pronounced 'mode' for negative Pearson's correlation coefficient values. The analysis conducted also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels were identified. CONCLUSIONS: In agreement with previous studies in animal cells, a large degree of uncoupling was found between the transcriptome and translatome. However, components and processes were also identified that are under co-ordinated transcriptional and translational control in plant root cells.


Asunto(s)
Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Proteoma , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biología Computacional , Especificidad de Órganos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética
12.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530054

RESUMEN

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Asunto(s)
Inmunidad Innata , Microbiota , Lactante , Femenino , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Linfocitos/metabolismo , Leche Humana/química , Sistema Inmunológico/metabolismo , Oligosacáridos/análisis , Bifidobacterium/genética
13.
Elife ; 122024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385642

RESUMEN

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.


Asunto(s)
Vacunas contra el SIDA , VIH-1 , Animales , Macaca mulatta , Quimiocina CXCL10 , Anticuerpos Anti-VIH , ADN
14.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702347

RESUMEN

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Asunto(s)
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Células Secretoras de Insulina/metabolismo , Ratones , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciación Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/farmacología , Islotes Pancreáticos/metabolismo
15.
J Clin Invest ; 134(9)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470479

RESUMEN

CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.


Asunto(s)
Encéfalo , Linfocitos T CD4-Positivos , Macaca mulatta , Receptores CCR7 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T CD4-Positivos/inmunología , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Encéfalo/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Vigilancia Inmunológica
16.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830855

RESUMEN

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Asunto(s)
Galectina 3 , Lipopolisacáridos , Ratones Endogámicos C57BL , Neutrófilos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Galectina 3/metabolismo , Galectina 3/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Ratones , Infecciones por Pseudomonas/inmunología , Masculino , Femenino , Insuficiencia Respiratoria/metabolismo , Ratones Noqueados , Fagocitosis , Inmunidad Innata , Galectinas/metabolismo , Galectinas/genética
17.
Sci Signal ; 16(808): eabo6555, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874883

RESUMEN

The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.


Asunto(s)
Interleucina-17 , Esclerosis Múltiple , Humanos , Diferenciación Celular , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Esclerosis Múltiple/genética , Receptores de Antígenos de Linfocitos T/metabolismo , ARN Mensajero/metabolismo , Células Th17
18.
Clin Nutr ; 42(12): 2528-2539, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37931372

RESUMEN

BACKGROUND: Maternal diet influences the milk composition, yet little information is available on the impact of maternal diet on milk miRNAs expression. Further, the association of human milk miRNAs to maternal diet and milk microbiota is not explored. In addition, the role of milk miRNAs on the infant gut microbiota, infant growth and development has not been investigated. METHODS: Milk samples were collected from 60 healthy lactating women at ≤15d post-partum, HTG transcriptome assay was performed to examine milk miRNA profile. Maternal clinical and dietary clusters information were available and infant anthropometric measures were followed up to one year of age. Milk and infant microbiota were analyzed by 16S rRNA gene sequencing and integrative multi-omics data analysis was performed to identify potential association between microRNA, maternal dietary nutrients and microbiota. RESULTS: Discriminant analysis revealed that the milk miRNAs were clustered into groups according to the maternal protein source. Interestingly, 31 miRNAs were differentially expressed (P adj < 0.05) between maternal dietary clusters (Cluster 1: enriched in plant protein and fibers and Cluster 2: enriched in animal protein), with 30 miRNAs downregulated in the plant protein group relative to animal protein group. Pathway analysis revealed that the top enriched pathways (P adj < 0.01) were involved in cell growth and proliferation processes. Furthermore, significant features contributing to the clustering were associated with maternal dietary nutrients and milk microbiota (r > 0.70). Further, miR-378 and 320 family miRNAs involved in adipogenesis were positively correlated to the infant BMI-z-scores, weight, and weight for length-z-scores at 6 months of age. CONCLUSIONS: Maternal dietary source impacts the milk miRNA expression profile. Further, miRNAs were associated with maternal dietary nutrients, milk microbiota and to the infant gut microbiota and infant growth and development. CLINICAL TRIAL: The study is registered in ClinicalTrials.gov. The identification number is NCT03552939.


Asunto(s)
Microbioma Gastrointestinal , MicroARNs , Femenino , Humanos , Lactante , Dieta , Microbioma Gastrointestinal/genética , Lactancia , MicroARNs/genética , Leche Humana/metabolismo , Nutrientes , Proteínas de Plantas , ARN Ribosómico 16S/genética
19.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37503150

RESUMEN

CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.

20.
bioRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662237

RESUMEN

Virologic suppression with antiretroviral therapy (ART) has significantly improved health outcomes for people living with HIV, yet challenges related to chronic inflammation in the central nervous system (CNS) - known as Neuro-HIV- persist. As primary targets for HIV-1 with the ability to survey and populate the CNS and interact with myeloid cells to co-ordinate neuroinflammation, CD4 T cells are pivotal in Neuro-HIV. Despite their importance, our understanding of CD4 T cell distribution in virus-targeted CNS tissues, their response to infection, and potential recovery following initiation of ART remain limited. To address these gaps, we studied ten SIVmac251-infected rhesus macaques using an ART regimen simulating suboptimal adherence. We evaluated four macaques during the acute phase pre-ART and six during the chronic phase. Our data revealed that HIV target CCR5+ CD4 T cells inhabit both the brain parenchyma and adjacent CNS tissues, encompassing choroid plexus stroma, dura mater, and the skull bone marrow. Aligning with the known susceptibility of CCR5+ CD4 T cells to viral infection and their presence within the CNS, high levels of viral RNA were detected in the brain parenchyma and its border tissues during acute SIV infection. Single-cell RNA sequencing of CD45+ cells from the brain revealed colocalization of viral transcripts within CD4 clusters and significant activation of antiviral molecules and specific effector programs within T cells, indicating CNS CD4 T cell engagement during infection. Despite viral suppression with ART, acute infection led to significant depletion of CNS CD4 T cells, persisting into the chronic phase. These findings underscore the functional involvement of CD4 T cells within the CNS during SIV infection, enhancing our understanding of their role in establishing CNS viral presence. Our results offer insights for potential T cell-focused interventions while also underscoring the challenges in eradicating HIV from the CNS, even with effective ART.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA