Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Asian J ; : e202400721, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136408

RESUMEN

Donor-acceptor (D-A) materials based on butterfly-shaped molecules could inhibit exciton-migration-induced quenching due to molecular twist. To explore this attribute towards beneficial photophysical properties, three novel bipolar acceptor-donor-acceptor (A-D-A) molecules with triphenyl triazine end capping along with substitution ortho to the Tröger's base (TB) scaffold varying from H, Me, and F were explored. The installation of H/Me/F imparted an electron push-pull effect with concomitant maneuvering of photophysical properties. On increasing solvent polarity, a remarkable bathochromic shift with a significant decrease in emission efficiency was observed due to the twisted intramolecular charge transfer state (TICT). Emission enhancement in the ethylene glycol-water mixture and diminution in the THF-water mixture further confirmed the existence of TICT states in these TBs. The torsional dynamics in the excited state were also evidenced by the time-dependent density-functional theory (TD-DFT) calculations. Owing to the butterfly architecture of the TB that suppressed TICT, TB-Trzs exhibited a significant blue shift, accompanied by a favorable quantum yield in the solid state. Among the three compounds, Me-TB-Trz exhibited deep-blue photoluminescence and was explored as a dopant in organic light-emitting diodes (OLEDs) to obtain deep-blue electroluminescence of brightness 4128 cdm-2 and CIE coordinates of (0.16, 0.09).

2.
Front Optoelectron ; 16(1): 46, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095740

RESUMEN

White organic light-emitting diodes (WOLEDs) have several desirable features, but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures. Herein, we investigate a standard blue emitting hole transporting material (HTM) N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) and its exciplex emission upon combining with a suitable electron transporting material (ETM), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). Blue and yellow OLEDs with simple device structures are developed by using a blend layer, NPB:TAZ, as a blue emitter as well as a host for yellow phosphorescent dopant iridium (III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01). Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units. The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer (CGL). Judicious choice of the spacer prevents exciton diffusion from the blue emitter unit, yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation. This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission. The overall white light emission properties are enhanced, achieving CIE coordinates (0.36, 0.39) and color temperature (4643 K) similar to daylight. Employing intermolecular exciplex emission in OLEDs simplifies the device architecture via its dual functionality as a host and as an emitter.

3.
Chem Asian J ; 18(13): e202300276, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37158669

RESUMEN

The synthetic feasibility and excellent luminescence features of organic molecules attracted much attention and were eventually found useful in lighting applications. In this context, a solvent-free organic liquid having attractive thermally activated delayed fluorescence features in bulk along with high processability has prime importance. Herein, we report a series of naphthalene monoimide-based solvent-free organic liquids exhibiting cyan to red thermally activated delayed fluorescence with luminescence quantum yields up to 80% and lifetimes between 10 to 45 µs. An effective approach explored energy transfer between liquid donors with various emitters exhibiting tunable emission colors, including white. The high processability of liquid emitters improved the compatibility with polylactic acid and was used for developing multicolor emissive objects using 3D printing. Our demonstration of the thermally activated delayed fluorescence liquid will be much appreciated as a processable alternate emissive material suitable for large-area lighting, display, and related applications.

4.
ACS Omega ; 5(3): 1698-1707, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32010844

RESUMEN

Organic light-emitting diodes (OLEDs), in general, require multilayer devices and microcavity structures for emission tuning, which increases the complexity and cost of production. Hence, it is imperative to develop techniques for spectral tuning, which employ simplified device structures. In this study, we have selected a tris(8-hydroxyquinolinato)aluminum (Alq3): 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)benzopyropyrano (6,7-8-i,j)quinolizin-11-one (C545T)-based OLED and investigated the dependence of the OLED emission on various deposition parameters and the electrical bias. The concentration of the dopant in the emissive layer (EML) was varied from 3 to 50%, and the single dopant emitter as a limiting case was also studied along with studies on the varied deposition rates and EML thickness. By varying the deposition parameters, the emission was observed to change from excitonic green to excimeric yellow. With increased doping concentration, reduction in pure exciton emission with an increase in excimer emission was observed, resulting in electroluminescent spectral red shift. Similarly, electroluminescence spectra have shown different levels of broadening, depending on the deposition rate and thickness of the EML. These effects could be reversed with increasing applied electric field. Thus, it is indicated that, by suitably optimizing the deposition parameters of the dopant material, spectral tuning can easily be obtained, which may form the basis of simplified and cost-effective device structures.

5.
QJM ; 117(4): 285-286, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015829
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA