Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 25(8): 9116-9121, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437996

RESUMEN

A metamaterial consisting of an array of gold micro-disks, separated from a ground plane of indium tin oxide (ITO) by a thin film of vanadium dioxide (VO2), behaves as a perfect absorber at infrared (IR) frequencies at room temperature. This metamaterial, which is transparent to visible light, can be switched to a highly reflecting state for IR light by heating the metamaterial to temperatures larger than the metal-insulator phase transition temperature 68°C of VO2. For a disk diameter of 1.5 µm and VO2 film thickness of 320 nm, two absorption bands are obtained: one, that arises from the metamaterial resonance; and a second peak that arises principally from a Fabry-Pérot resonance. A large change (>78%) occurs in the reflectivity between the low and high temperature phases. IR emittance of the metamaterial was measured with IR cameras and shown to be switchable to result in low emittance at high temperature. Optical readout of the state of VO2 within the metamaterial is demonstrated.

2.
ACS Omega ; 7(5): 4121-4134, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155906

RESUMEN

Transition-metal dichalcogenides (TMDCs) are unique layered materials with exotic properties. So, examining their structures holds tremendous importance. 2H-MoSe2 (analogous to MoS2; Gr. 6 TMDC) is a crucial optoelectronic material studied extensively using Raman spectroscopy. In this regard, low-frequency Raman (LFR) spectroscopy can probe this material's structure as it reveals distinct vibration modes. Here, we focus on understanding the microstructural evolution of different 2H-MoSe2 morphologies and their layers using LFR scattering. We grew phase-pure 2H-MoSe2 (with variable microstructures) directly on a Mo foil using a two-furnace ambient-pressure chemical vapor deposition (CVD) system by carefully controlling the process parameters. We analyzed the layers of exfoliated flakes after ultrasonication and drop-cast 2H-MoSe2 of different layer thicknesses by choosing different concentrations of 2H-MoSe2 solutions. Further detailed analyses of the respective LFR regions confirm the presence of newly identified Raman signals for the 2H-MoSe2 nanosheets drop-cast on Raman-grade CaF2. Our results show that CaF2 is an appropriate Raman-enhancing substrate compared to Si/SiO2 as it presents new LFR modes of 2H-MoSe2. Therefore, CaF2 substrates are a promising medium to characterize in detail other TMDCs using LFR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA