RESUMEN
Here, we investigated general porin regulation in Yersinia pseudotuberculosis 488, the causative agent of Far Eastern scarlet-like fever, in response to sublethal concentrations of antibiotics. We chose four antibiotics of different classes and measured gene expression using qRT-PCR and GFP reporter systems. Our data showed temporal regulation of the general porin genes ompF and ompC caused by antibiotic stress. The porin transcription initially decreased, providing early defensive response of the bacterium, while it returned to that of the untreated cells on prolonged antibiotic exposure. Unlike the major porin genes, the transcription of the alternative porin genes ompX and lamB was increased. Moreover, a short-term ompR- and marA-mediated porin regulation was observed. The main finding was a phenotypic heterogeneity of Y. pseudotuberculosis population manifested in variable porin gene expression under carbenicillin exposure. This may offer adaptive fitness advantages for a particular bacterial subpopulation.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Carbenicilina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Porinas/biosíntesis , Estrés Fisiológico/efectos de los fármacos , Yersinia pseudotuberculosis/metabolismoRESUMEN
The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.
Asunto(s)
Evolución Molecular , Flujo Genético , Variación Genética , Tasa de Mutación , Yersinia pestis/genética , Secuencia de Bases , China , Genética de Población , Funciones de Verosimilitud , Modelos Genéticos , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADNRESUMEN
Yersinia enterocolitica is a food-borne, gastro-intestinal pathogen with world-wide distribution. Only 11 serotypes have been isolated from patients, with O:3, O:9, O:8 and O:5,27 being the serotypes most commonly associated with human yersiniosis. Serotype is an important characteristic of Y. enterocolitica strains, allowing differentiation for epidemiology, diagnosis and phylogeny studies. Conventional serotyping, performed by slide agglutination, is a tedious and laborious procedure whose interpretation tends to be subjective, leading to poor reproducibility. Here we present a PCR-based typing scheme for molecular identification and patho-serotyping of Y. enterocolitica. Genome-wide comparison of Y. enterocolitica sequences allowed analysis of the O-antigen gene clusters of different serotypes, uncovering their formerly unknown genomic locations, and selection of targets for serotype-specific amplification. Two multiplex PCRs and one additional PCR were designed and tested on various reference strains and isolates from different origins. Our genotypic assay proved to be highly specific for identification of Y. enterocolitica species, discrimination between virulent and non-virulent strains, distinguishing the main human-related serotypes, and typing of conventionally untypeable strains. This genotyping scheme could be applied in microbiology laboratories as an alternative or complementary method to the traditional phenotypic assays, providing data for epidemiological studies.
Asunto(s)
Genoma Bacteriano , Técnicas de Genotipaje , Tipificación Molecular/métodos , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/genética , Genotipo , Humanos , Familia de Multigenes , Antígenos O/genética , Reacción en Cadena de la Polimerasa/métodos , Serotipificación , Yersiniosis/diagnóstico , Yersiniosis/microbiologíaRESUMEN
In lipopolysaccharide (LPS) biosynthesis of gram-negative bacteria the lipid A-core oligosaccharide (LA-core) and O-polysaccharide (O-PS) biosynthesis pathways proceed separately and converge in periplasmic space where the waaL-encoded ligase joins O-PS onto LA-core. Enterobacterial common antigen (ECA) biosynthesis follows that of O-PS except that ECA is usually ligated to phosphatidylglycerol (PG) and only rarely to LA-core. In Yersinia enterocolitica serotype O:3 LPS is composed of LA-inner core (IC) onto which a homopolymeric O-PS, a hexasaccharide called outer core (OC), and/or ECA are ligated. We found that an individual O:3 LPS molecule carries either OC or O-PS substitution but not both. Related to this, we identified three genes in Y. enterocolitica O:3 that all expressed O-PS ligase activity in the Escherichia coliΔwaaL mutant. The LPS phenotypes of Y. enterocolitica O:3 single, double and triple ligase mutants indicated that two of ligases, named as WaaL(os) and WaaL(ps) , had a preferred substrate specificity for OC and O-PS, respectively, although with some promiscuity between the ligases; the third ligase named as WaaL(xs) was not involved in LPS or ECA biosynthesis. In Y. enterocolitica O:8 the WaaL(os) homologue (Ye1727) ligated a single pentasaccharide O-unit to LA-IC suggesting that in both Y. enterocolitica O:3 and O:8 WaaL(os) is an oligosaccharide (OS)-specific ligase. Finally, Yersinia pestis and Y. pseudotuberculosis carry only the waaL(ps) gene, while either waaL(os) or waaL(xs) or both are additionally present in other Yersinia species. This is the first report on the presence of three different oligo-/polysaccharide-specific ligases in a single bacterium.
Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas/genética , Lipopolisacáridos/biosíntesis , Yersinia enterocolitica/enzimología , Proteínas Bacterianas/genética , Ligasas/metabolismo , Datos de Secuencia Molecular , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismoRESUMEN
Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.
Asunto(s)
Adhesión Bacteriana/fisiología , Interacciones Huésped-Patógeno , Yersiniosis , Yersinia enterocolitica/fisiología , Adaptación Fisiológica , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Regulación Bacteriana de la Expresión Génica , Calor , Humanos , Ratones , Ratones Endogámicos BALB C , Antígenos O/genética , Antígenos O/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Yersinia enterocolitica/patogenicidadRESUMEN
BACKGROUND: Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. RESULTS: Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity <50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. CONCLUSIONS: Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype.
Asunto(s)
Genoma Bacteriano/genética , Yersiniosis/genética , Yersinia enterocolitica/genética , Yersinia enterocolitica/patogenicidad , Animales , Coinfección , Femenino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Yersinia enterocolitica/metabolismoRESUMEN
We report here the first finished and annotated genome sequence of a representative of the most epidemiologically successful Yersinia group, Y. enterocolitica subsp. palearctica strain Y11, serotype O:3, biotype 4. This strain is a certified type strain of the German DSMZ collection (DSM no. 13030; Yersinia enterocolitica subsp. palearctica) that was isolated from the stool of a human patient (H. Neubauer, S. Aleksic, A. Hensel, E. J. Finke, and H. Meyer. Int. J. Med. Microbiol. 290:61-64, 2000).
Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Yersinia enterocolitica/genética , Alemania , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Yersiniosis/microbiología , Yersinia enterocolitica/aislamiento & purificaciónRESUMEN
BACKGROUND: High-pathogenic Y. enterocolitica ssp. enterocolitica caused several human outbreaks in Northern America. In contrast, low pathogenic Y. enterocolitica ssp. palearctica serobiotype O:3/4 is responsible for sporadic cases worldwide with asymptomatic pigs being the main source of infection. Genomes of three Y. enterocolitica ssp. palearctica serobiotype O:3/4 human isolates (including the completely sequenced Y11 German DSMZ type strain) were compared to the high-pathogenic Y. enterocolitica ssp. enterocolitica 8081 O:8/1B to address the peculiarities of the O:3/4 group. RESULTS: Most high-pathogenicity-associated determinants of Y. enterocolitica ssp. enterocolitica (like the High-Pathogenicity Island, yts1 type 2 and ysa type 3 secretion systems) are absent in Y. enterocolitica ssp. palearctica serobiotype O:3/4 genomes. On the other hand they possess alternative putative virulence and fitness factors, such as a different ysp type 3 secretion system, an RtxA-like and insecticidal toxins, and a N-acetyl-galactosamine (GalNAc) PTS system (aga-operon). Horizontal acquisition of two prophages and a tRNA-Asn-associated GIYep-01 genomic island might also influence the Y. enterocolitica ssp. palearctica serobiotype O:3/4 pathoadaptation. We demonstrated recombination activity of the PhiYep-3 prophage and the GIYep-01 island and the ability of the aga-operon to support the growth of the Y. enterocolitica ssp. enterocolitica O:8/1B on GalNAc. CONCLUSIONS: Y. enterocolitica ssp. palearctica serobiotype O:3/4 experienced a shift to an alternative patchwork of virulence and fitness determinants that might play a significant role in its host pathoadaptation and successful worldwide dissemination.
Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Genómica , Yersiniosis/microbiología , Yersinia enterocolitica/genética , Yersinia enterocolitica/patogenicidad , Animales , Cromosomas Bacterianos/genética , Fimbrias Bacterianas/genética , Flagelos/genética , Genes Bacterianos/genética , Islas Genómicas/genética , Humanos , Familia de Multigenes/genética , Especificidad de la Especie , Yersiniosis/transmisión , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/citología , Zoonosis/microbiologíaRESUMEN
Autoagglutination (AA) is a protective phenotypic trait facilitating survival of bacteria in hostile environments and in the host during infection. Autoagglutination factors (AFs) that possess self-associating ability are currently characterized in many Gram-negative bacteria, but Yersinia pestis AFs are still a matter of debate. Previously, we have shown that AF of Hms(-) strain Y. pestis EV76 is a complex of the 17,485-kDa protein and a low-molecular-weight component with siderophore activity. Here, we identified the protein moiety of AF and examined its role in AA of Hms(+) and Hms(-)Y. pestis strains. Using MALDI-TOF MS of trypsin-hydrolyzed AF, we unambiguously identified the protein as YPO0502, which belongs to a family of Hcp-proteins forming pilus-like structures of the type six secretion system (T6SS). To address the role of YPO0502 in AA, we cloned ypo0502 in E. coli, overexpressed it in Y. pestis and constructed its knock-out mutant in Y. pestis. However, all these approaches failed: YPO0502 was not secreted in E. coli, formed inclusion bodies when overexpressed in Y. pestis, and could probably be compensated by other Hcp-like proteins in Y. pestis. In contrast, downregulation of ypo0502 expression by its antisense RNA supported the contribution of YPO0502 in AA of Hms(+) and Hms(-)Y. pestis strains. The results of the present study indicate that the Hcp-like component of T6SS encoded by ypo502 is involved in Y. pestis AA and suggest that at least one (ypo0499-0516) of the 6 T6SS clusters of Y. pestis is involved in bacterial interaction.
Asunto(s)
Aglutininas/análisis , Proteínas Bacterianas/análisis , Sustancias Macromoleculares/química , Proteínas de Transporte de Membrana/análisis , Yersinia pestis/química , Adhesión Bacteriana , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Yersinia enterocolitica 1A strains are generally considered apathogenic. However, besides environmental sources, foods and animals, they are repeatedly isolated from patients with gastrointestinal symptoms typical to those evoked by Yersinia of the virulent 1B and 2-4 biotypes. Also, at least 2 gastrointestinal outbreaks associated with 1A strains have been reported. There is a general controversy concerning the pathogenic potential of 1A isolates of clinical and non-clinical origin. To address the 1A puzzle, we have determined the genome sequences of 2 1A strains, a nosocomial O:5 and environmental O:36 isolates, and compared them to each other and to O:8/1B and O:3/4 representatives of the virulent serobiotypes. 1A isolates have mosaic genomes and share genes both with serobiotypes O:8/1B and O:3/4 that implies their common descent. Besides the pYV virulence plasmid, 1A strains lack the classical virulence markers, like the Ail adhesin, the YstA enterotoxin, and the virulence-associated protein C. However, they still possess genes encoding such known and suspect virulence-associated determinants like the YstB enterotoxin, the InvA invasin, the mucoid Yersinia factor MyfA, and the enterochelin utilisation fepBDGC/fepA/fes gene cluster. In contrast to previous studies, we have found that the strains of the 1A group possess the MyfA antigen although with limited similarity to the highly conserved MyfA in the virulent serobiotypes. In turn, the MyfB chaperone coevolved with the MyfA fibrillae, while the MyfC usher retains 90% identity to its MyfC counterparts in O:3/O:8 group. The only notable difference between clinical and non-clinical 1A strains was the presence of a truncated Rtx toxin-like gene cluster and remnants of a P2-like prophage in the hospital O:5 isolate. Taken together, Y. enterocolitica BT 1A group represents opportunistic pathogens whose opportunity to establish infection seems to rely mainly on the state of the host defence system. However, presence of known and putative virulence-associated features shared with the pathogenic serobiotypes compels to reconsider properly the pathogenic potential of this group of emerging pathogens.
Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Yersinia enterocolitica/genética , Yersinia enterocolitica/patogenicidad , Animales , Técnicas de Tipificación Bacteriana , Infección Hospitalaria/microbiología , ADN Bacteriano/química , Microbiología Ambiental , Genes Bacterianos , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Plásmidos , Serotipificación , Factores de Virulencia/genética , Yersiniosis/microbiología , Yersinia enterocolitica/clasificación , Yersinia enterocolitica/aislamiento & purificaciónRESUMEN
The structures of the N-terminal domains of two integrases of closely related but not identical asn tDNA-associated genomic islands, Yersinia HPI (high pathogenicity island; encoding siderophore yersiniabactin biosynthesis and transport) and an Erwinia carotovora genomic island with yet unknown function, HAI7, have been resolved. Both integrases utilize a novel four-stranded beta-sheet DNA-binding motif, in contrast to the known proteins that bind their DNA targets by means of three-stranded beta-sheets. Moreover, the beta-sheets in Int(HPI) and Int(HAI7) are longer than those in other integrases, and the structured helical N terminus is positioned perpendicularly to the large C-terminal helix. These differences strongly support the proposal that the integrases of the genomic islands make up a distinct evolutionary branch of the site-specific recombinases that utilize a unique DNA-binding mechanism.
Asunto(s)
Islas Genómicas , Integrasas/química , Yersinia pestis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Coenzima A Ligasas/química , Cristalización , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Integrasas/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de AminoácidoRESUMEN
BACKGROUND & AIMS: Hypoxia inducible factor-1 (HIF-1) is the key transcriptional regulator during adaptation to hypoxia. Recent studies provide evidence for HIF-1 activation during bacterial infections. However, molecular details of how bacteria activate HIF-1 remain unclear. Here, we pursued the role of bacterial siderophores in HIF-1 activation during infection with Enterobacteriaceae. METHODS: In vivo, HIF-1 activation and HIF-1-dependent gene induction in Peyer's patches were analyzed after orogastric infection with Yersinia enterocolitica. The course of an orogastric Y enterocolitica infection was determined using mice with a deletion of HIF-1alpha in the intestine. In vitro, the mechanism of HIF-1 activation was analyzed in infections with Y enterocolitica, Salmonella enterica subsp enterica, and Enterobacter aerogenes. RESULTS: Infection of mice with Y enterocolitica led to functional activation of HIF-1 in Peyer's patches. Because mice with deletion of HIF-1alpha in the intestinal epithelium showed a significantly higher susceptibility to orogastric Y enterocolitica infections, bacterial HIF-1 activation appears to represent a host defense mechanism. Additional studies with Y enterocolitica, S enterica subsp enterica, or E aerogenes, and, moreover, application of their siderophores (yersiniabactin, salmochelin, aerobactin) caused a robust, dose-dependent HIF-1 response in human epithelia and endothelia, independent of cellular hypoxia. HIF-1 activation occurs most likely because of inhibition of prolylhydroxylase activity and is abolished upon infection with siderophore uptake deficient bacteria. CONCLUSIONS: Taken together, this study reveals what we believe to be a previously unrecognized role of bacterial siderophores for hypoxia-independent activation of HIF-1 during infection with human pathogenic bacteria.
Asunto(s)
Enterobacteriaceae/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ganglios Linfáticos Agregados/metabolismo , Sideróforos/metabolismo , Yersiniosis/metabolismo , Animales , Células CACO-2 , Hipoxia de la Célula , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Enterobacter aerogenes/metabolismo , Enterobacteriaceae/patogenicidad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Regulación de la Expresión Génica , Células HeLa , Humanos , Ácidos Hidroxámicos/metabolismo , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Oxígeno/metabolismo , Ganglios Linfáticos Agregados/microbiología , Fenoles/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Salmonella enterica/metabolismo , Tiazoles/metabolismo , Factores de Tiempo , Activación Transcripcional , Regulación hacia Arriba , Yersiniosis/genética , Yersiniosis/microbiología , Yersinia enterocolitica/metabolismoRESUMEN
During routine quality control testing of diagnostic methods for Shiga toxin-producing Escherichia coli (STEC) using stool samples spiked with STEC, it was observed that the Shiga toxin could not be detected in 32 out of 82 samples tested. Strains of E. coli isolated from such stool samples were shown to be responsible for this inhibition. One particular isolate, named E. coli 1307, was intensively studied because of its highly effective inhibitory effect; this strain significantly reduced growth and Shiga toxin levels in coculture of several STEC strains regardless of serovar or Shiga toxin type. The probiotic E. coli Nissle 1917 inhibited growth and reduced Shiga toxin levels in STEC cultures to an extent similar to E. coli 1307, but commensal E. coli strains and several other known probiotic bacteria (enterococci, Bacillus sp., Lactobacillus acidophilus) showed no, or only small, inhibitory effects. Escherichia coli 1307 lacks obvious fitness factors, such as aerobactin, yersiniabactin, microcins and a polysaccharide capsule, that are considered to promote the growth of pathogenic bacteria. We therefore propose strain E. coli 1307 as a candidate probiotic for use in the prevention and treatment of infections caused by STEC.
Asunto(s)
Antibiosis , Escherichia coli/crecimiento & desarrollo , Probióticos , Toxina Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Técnicas de Cocultivo , Medios de Cultivo , Escherichia coli/clasificación , Escherichia coli/aislamiento & purificación , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Heces/microbiología , Humanos , Serotipificación , Escherichia coli Shiga-Toxigénica/metabolismoRESUMEN
Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.
Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Yersiniosis/inmunología , Yersinia pestis/genética , Yersinia pestis/patogenicidad , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Femenino , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutación , Virulencia , Yersiniosis/microbiologíaRESUMEN
In this study, we compared the expression of CYP153, sodA, sodC, and recA genes and ROS generation in hydrocarbon-degrading Rhodococcus erythropolis in the presence of cyclohexane, naphthalene, and diesel fuel. The expression of cytochrome P450, sodA (encoding Fe/Mn superoxide dismutase), recA, and superoxide anion radical generation rate increased after the addition of all studied hydrocarbons. The peak of CYP153, sodA, and recA gene expression was registered in the presence of naphthalene. The same substrate upregulated the Cu/Zn superoxide dismutase gene, sodC. Cyclohexane generated the highest level of superoxide anion radical production. Hydrogen peroxide accumulated in the medium enriched with diesel fuel. Taken together, hydrocarbon biotransformation leads to oxidative stress and upregulation of antioxidant enzymes and CYP153 genes, and increases DNA reparation levels in R. erythropolis cells.
Asunto(s)
Ciclohexanos/toxicidad , Gasolina/toxicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Naftalenos/toxicidad , Estrés Oxidativo , Rhodococcus/efectos de los fármacos , Rhodococcus/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Biotransformación , Ciclohexanos/metabolismo , Perfilación de la Expresión Génica , Naftalenos/metabolismo , Especies Reactivas de Oxígeno/análisisRESUMEN
A rapid method was developed to determine the invasion frequency of enteropathogenic Yersinia into intestinal C2BBe1 cells by means of flow cytometry. Bacteria are labelled with a thiol-cleavable amine-reactive biotin and subsequently incubated with the fluorochrome-labelled biotin-ligand neutravidin. After infection of the intestinal cells with the labelled bacteria, the neutravidin-coupled fluorochrome is detached by breaking up the linker through reduction of the disulphide. Despite reduced adhesion and invasion frequencies of the labelled bacteria into C2BBe1 cells this procedure offers the basis for the development of a fast single-step staining protocol for the recovery of invading bacteria in in a host-pathogen system for further transcriptome or proteome analysis.