Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(14): e103812, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32488939

RESUMEN

It is controversial whether mitochondrial dysfunction in skeletal muscle is the cause or consequence of metabolic disorders. Herein, we demonstrate that in vivo inhibition of mitochondrial ATP synthase in muscle alters whole-body lipid homeostasis. Mice with restrained mitochondrial ATP synthase activity presented intrafiber lipid droplets, dysregulation of acyl-glycerides, and higher visceral adipose tissue deposits, poising these animals to insulin resistance. This mitochondrial energy crisis increases lactate production, prevents fatty acid ß-oxidation, and forces the catabolism of branched-chain amino acids (BCAA) to provide acetyl-CoA for de novo lipid synthesis. In turn, muscle accumulation of acetyl-CoA leads to acetylation-dependent inhibition of mitochondrial respiratory complex II enhancing oxidative phosphorylation dysfunction which results in augmented ROS production. By screening 702 FDA-approved drugs, we identified edaravone as a potent mitochondrial antioxidant and enhancer. Edaravone administration restored ROS and lipid homeostasis in skeletal muscle and reinstated insulin sensitivity. Our results suggest that muscular mitochondrial perturbations are causative of metabolic disorders and that edaravone is a potential treatment for these diseases.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Lipogénesis , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Animales , Ratones , Ratones Transgénicos
2.
J Neuroinflammation ; 20(1): 217, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759218

RESUMEN

BACKGROUND: Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS: A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS: These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.


Asunto(s)
Fiebre del Nilo Occidental , Humanos , Animales , Ratones , Glucólisis , Sistema Nervioso Central , Brotes de Enfermedades , Perfilación de la Expresión Génica
3.
BMC Cancer ; 23(1): 36, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624406

RESUMEN

BACKGROUND: Lung cancer is one of the most lethal tumors with a poor survival rate even in those patients receiving new therapies. Metabolism is considered one of the hallmarks in carcinogenesis and lipid metabolism is emerging as a significant contributor to tumor metabolic reprogramming. We previously described a profile of some lipid metabolism related genes with potential prognostic value in advanced lung cancer. AIM: To analyze clinical and pathological characteristics related to a specific metabolic lipid genomic signature from patients with advanced lung cancer and to define differential outcome. METHODS: Ninety samples from NSCLC (non-small cell lung cancer) and 61 from SCLC (small cell lung cancer) patients were obtained. We performed a survival analysis based on lipid metabolic genes expression and clinical characteristics. The primary end point of the study was the correlation between gene expression, clinical characteristics and survival. RESULTS: Clinical variables associated with overall survival (OS) in NSCLC patients were clinical stage, adenocarcinoma histology, Eastern Cooperative Oncology Group (ECOG), number and site of metastasis, plasma albumin levels and first-line treatment with platinum. As for SCLC patients, clinical variables that impacted OS were ECOG, number of metastasis locations, second-line treatment administration and Diabetes Mellitus (DM). None of them was associated with gene expression, indicating that alterations in lipid metabolism are independent molecular variables providing complementary information of lung cancer patient outcome. CONCLUSIONS: Specific clinical features as well as the expression of lipid metabolism-related genes might be potential biomarkers with differential outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Metabolismo de los Lípidos/genética , Pronóstico , Biomarcadores , Carcinoma Pulmonar de Células Pequeñas/genética , Lípidos , Estudios Retrospectivos
4.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108121

RESUMEN

Synsepalum dulcificum (Richardella dulcifica) is a berry fruit from West Africa with the ability to convert the sour taste into a sweet taste, and for this reason, the fruit is also known as the "miracle berry" (MB). The red and bright berry is rich in terpenoids. The fruit's pulp and skin contain mainly phenolic compounds and flavonoids, which correlate with their antioxidant activity. Different polar extracts have been described to inhibit cell proliferation and transformation of cancer cell lines in vitro. In addition, MB has been shown to ameliorate insulin resistance in a preclinical model of diabetes induced by a chow diet enriched in fructose. Herein, we have compared the biological activities of three supercritical extracts obtained from the seed-a subproduct of the fruit-and one supercritical extract obtained from the pulp and the skin of MB. The four extracts have been characterized in terms of total polyphenols content. Moreover, the antioxidant, anti-inflammatory, hypo-lipidemic, and inhibition of colorectal cancer cell bioenergetics have been compared. Non-polar supercritical extracts from the seed are the ones with the highest effects on the inhibition of bioenergetic of colorectal (CRC) cancer cells. At the molecular level, the effects on cell bioenergetics seems to be related to the inhibition of main drivers of the de novo lipogenesis, such as the sterol regulatory element binding transcription factor (SREBF1) and downstream molecular targets fatty acid synthase (FASN) and stearoyl coenzyme desaturase 1 (SCD1). As metabolic reprograming is considered as one of the hallmarks of cancer, natural extracts from plants may provide complementary approaches in the treatment of cancer. Herein, for the first time, supercritical extracts from MB have been obtained, where the seed, a by-product of the fruit, seems to be rich in antitumor bioactive compounds. Based on these results, supercritical extracts from the seed merit further research to be proposed as co-adjuvants in the treatment of cancer.


Asunto(s)
Frutas , Extractos Vegetales , Humanos , Frutas/química , Extractos Vegetales/química , Antioxidantes/química , Semillas/química , Enfermedad Crónica
5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142372

RESUMEN

Obesity is associated to a low grade of chronic inflammation leading to metabolic stress, insulin resistance, metabolic syndrome, dislipidemia, cardiovascular disease, and even cancer. A Mediterranean diet has been shown to reduce systemic inflammatory factors, insulin resistance, and metabolic syndrome. In this scenario, precision nutrition may provide complementary approaches to target the metabolic alterations associated to "unhealthy obesity". In a previous work, we described a pomegranate extract (PomE) rich in punicalagines to augment markers of browning and thermogenesis in human differentiated adipocytes and to augment the oxidative respiratory capacity in human differentiated myocytes. Herein, we have conducted a preclinical study of high-fat-diet (HFD)-induced obesity where PomE augments the systemic energy expenditure (EE) contributing to a reduction in the low grade of chronic inflammation and insulin resistance associated to obesity. At the molecular level, PomE promotes browning and thermogenesis in adipose tissue, reducing inflammatory markers and augmenting the reductive potential to control the oxidative stress associated to the HFD. PomE merits further investigation as a complementary approach to alleviate obesity, reducing the low grade of chronic inflammation and metabolic stress.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Granada (Fruta) , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Inflamación/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Estrés Fisiológico , Termogénesis
6.
Scand J Med Sci Sports ; 30(10): 1896-1907, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32609897

RESUMEN

The systemic response to exercise is dose-dependent and involves a complex gene expression regulation and cross-talk between tissues. This context ARISES the need for analyzing the influence of exercise dose on the profile of circulating microRNAs (c-miRNAs), as emerging posttranscriptional regulators and intercellular communicators. Thus, we hypothesized that different exercise doses will determine specific c-miRNA signatures that will highlight its potential as exercise dose biomarker. Nine active middle-aged males completed a 10-km race (10K), a half-marathon (HM), and a marathon (M). Blood samples were collected immediately before and after races. Plasma RNA was extracted, and a global screening of 752 microRNAs was analyzed using RT-qPCR. Three different c-miRNA profiles were defined according to the three doses. In 10K, 14 c-miRNAs were found to be differentially expressed between pre- and post-exercise, 13 upregulated and 1 downregulated. Regarding HM, 13 c-miRNAs were found to be differentially modulated, in all the cases upregulated. A total of 28 c-miRNAs were found to be differentially expressed in M, 21 overexpressed and 7 repressed after this race. We had also found 3 common c-miRNAs between 10K and M and 2 common c-miRNAs between 10K and HM. In silico analysis supported a close association between exercise dose c-miRNA profiles and cellular pathways linked to energy metabolism and cell cycle. In conclusion, we have observed that different exercise doses induced specific c-miRNA profiles. So, our results point to c-miRNAs as emerging exercise dose biomarkers and as one of regulatory mechanisms modulating the response to endurance exercise.


Asunto(s)
Comunicación Celular/fisiología , MicroARN Circulante/sangre , Resistencia Física/fisiología , Carrera/fisiología , Biomarcadores/sangre , Registros de Dieta , Regulación hacia Abajo , Humanos , Masculino , Carrera de Maratón/fisiología , Procesamiento Postranscripcional del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
7.
J Lipid Res ; 59(1): 14-24, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074607

RESUMEN

An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.


Asunto(s)
Coenzima A Ligasas/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Metabolismo de los Lípidos/genética , MicroARNs/genética , MicroARNs/uso terapéutico , Estearoil-CoA Desaturasa/metabolismo , Células Cultivadas , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Biología Computacional , Progresión de la Enfermedad , Células HEK293 , Humanos
8.
BMC Genomics ; 19(Suppl 8): 857, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30537927

RESUMEN

BACKGROUND: Identification of biomarkers associated with the prognosis of different cancer subtypes is critical to achieve better therapeutic assistance. In colorectal cancer (CRC) the discovery of stable and consistent survival markers remains a challenge due to the high heterogeneity of this class of tumors. In this work, we identified a new set of gene markers for CRC associated to prognosis and risk using a large unified cohort of patients with transcriptomic profiles and survival information. RESULTS: We built an integrated dataset with 1273 human colorectal samples, which provides a homogeneous robust framework to analyse genome-wide expression and survival data. Using this dataset we identified two sets of genes that are candidate prognostic markers for CRC in stages III and IV, showing either up-regulation correlated with poor prognosis or up-regulation correlated with good prognosis. The top 10 up-regulated genes found as survival markers of poor prognosis (i.e. low survival) were: DCBLD2, PTPN14, LAMP5, TM4SF1, NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 and GADD45B. The stability and robustness of the gene survival markers was assessed by cross-validation, and the best-ranked genes were also validated with two external independent cohorts: one of microarrays with 482 samples; another of RNA-seq with 269 samples. Up-regulation of the top genes was also proved in a comparison with normal colorectal tissue samples. Finally, the set of top 100 genes that showed overexpression correlated with low survival was used to build a CRC risk predictor applying a multivariate Cox proportional hazards regression analysis. This risk predictor yielded an optimal separation of the individual patients of the cohort according to their survival, with a p-value of 8.25e-14 and Hazard Ratio 2.14 (95% CI: 1.75-2.61). CONCLUSIONS: The results presented in this work provide a solid rationale for the prognostic utility of a new set of genes in CRC, demonstrating their potential to predict colorectal tumor progression and evolution towards poor survival stages. Our study does not provide a fixed gene signature for prognosis and risk prediction, but instead proposes a robust set of genes ranked according to their predictive power that can be selected for additional tests with other CRC clinical cohorts.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Tasa de Supervivencia
9.
J Pharmacol Exp Ther ; 366(2): 377-389, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29871992

RESUMEN

New series of polyphenols with a hydrophilic galloyl-based head and a hydrophobic N-acyl tail, linked through a serinol moiety, have been synthesized and tested against colon cancer cell growth. Our structure activity relationship studies revealed that galloyl moieties are essential for growth inhibition. Moreover, the length of the N-acyl chain is crucial for the activity. Introduction of a (Z) double bond in the acyl chain increased the anticancer properties. Our findings demonstrate that 16, the most potent compound within this series, has inhibitory effects on colon cancer cell growth and metabolism (glycolysis and mitochondrial respiration) at the same time that it activates 5'AMP-activated kinase (AMPK) and induces apoptotic cell death. Based on these results, we propose that 16 might reprogram colon cancer cell metabolism through AMPK activation. This might lead to alterations on cancer cell bioenergy compromising cancer cell viability. Importantly, these antiproliferative and proapoptotic effects are selective for cancer cells. Accordingly, these results indicate that 16, with an unsaturated C18 chain, might be a useful prototype for the development of novel colon cancer cell growth inhibitors affecting cell metabolism.


Asunto(s)
Antineoplásicos/farmacología , Polifenoles/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos
10.
BMC Complement Altern Med ; 18(1): 254, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223811

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most aggressive and mortal cancers. Although several drugs have been proposed for its treatment, it remains resistant and new alternatives are needed. In this context, plants and their derivatives constitute a relevant source of bioactive components which might efficiently inhibit tumor cell progression. METHODS: In this study, we have analyzed the potential anti-carcinogenic effect of different Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) plant extracts obtained by different green technologies (Supercritical CO2 Extraction -SFE- and Ultrasonic Assisted Extraction -UAE-) to identify efficient plant extracts against human pancreatic cancer cells that could constitute the basis of novel treatment approaches. RESULTS: Asteraceae extracts showed better results as antitumoral agents than Lamiaceae by inducing cytotoxicity and inhibiting cell transformation, and SFE extracts were most efficient than UAE extracts. In addition, SFE derived plant extracts from Achillea millefolium and Calendula officinalis displayed synergism with the chemotherapeutic 5-Fluororacil. CONCLUSION: These results show how Yarrow and Marigold SFE-derived extracts can inhibit pancreatic cancer cell growth, and could be proposed for a comprehensive study to determine the molecular mechanisms involved in their bioactivity with the final aim to propose them as potential adjuvants in pancreatic cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Asteraceae/química , Lamiaceae/química , Neoplasias Pancreáticas/metabolismo , Extractos Vegetales/farmacología , Antineoplásicos/química , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fluorouracilo , Humanos , Extractos Vegetales/química
11.
Plant Foods Hum Nutr ; 72(1): 96-102, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28101823

RESUMEN

Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) extracts were obtained by applying two sequential extraction processes: supercritical fluid extraction with carbon dioxide, followed by ultrasonic assisted extraction using green solvents (ethanol and ethanol:water 50:50). The extracts were analyzed in terms of the total content of phenolic compounds and the content of flavonoids; the volatile oil composition of supercritical extracts was analyzed by gas chromatography and the antioxidant capacity and cell toxicity was determined. Lamiaceae plant extracts presented higher content of phenolics (and flavonoids) than Asteraceae extracts. Regardless of the species studied, the supercritical extracts presented the lowest antioxidant activity and the ethanol:water extracts offered the largest, following the order Origanum majorana > Melissa officinalis ≈ Achillea millefolium > Calendula officinalis. However, concerning the effect on cell toxicity, Asteraceae (especially Achillea millefolium) supercritical extracts were significantly more efficient despite being the less active as an antioxidant agent. These results indicate that the effect on cell viability is not related to the antioxidant activity of the extracts.


Asunto(s)
Achillea/química , Antioxidantes/farmacología , Calendula/química , Melissa/química , Origanum/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Supervivencia Celular/efectos de los fármacos , Cromatografía con Fluido Supercrítico , Flavonoides/análisis , Flavonoides/farmacología , Aceites Volátiles/análisis , Aceites Volátiles/farmacología , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Solventes
12.
J Lipid Res ; 57(2): 193-206, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26630911

RESUMEN

Metabolic reprogramming has emerged as a hallmark of cancer. MicroRNAs are noncoding RNAs that posttranscriptionally repress the expression of target mRNAs implicated in multiple physiological processes, including apoptosis, differentiation, and cancer. MicroRNAs can affect entire biological pathways, making them good candidates for therapeutic intervention compared with classical single target approaches. Moreover, microRNAs may become more relevant in the fine-tuning adaptation to stress situations, such as oncogenic events, hypoxia, nutrient deprivation, and oxidative stress. Furthermore, artificial microRNAs can be designed to modulate the expression of multiple targets of a specific pathway. In this review, we describe the metabolic reprogramming associated to cancer, with a special interest in the altered lipid metabolism. Next, we describe specific features of microRNAs that make them relevant to target cancer cell metabolism. Finally, in an attempt to open new therapeutic windows, we emphasize two exciting scenarios for microRNA-mediated intervention that need to be further explored: 1) the cooperation between FA biosynthesis (lipogenesis) and FA oxidation as complementary partners for the survival of cancer cells; and 2) the regulation of the intracellular lipid content modulating both lipid storage into lipid droplets, and lipid mobilization through lipolysis and/or lipophagy.


Asunto(s)
Metabolismo de los Lípidos/genética , MicroARNs/genética , Neoplasias/genética , Estrés Oxidativo/genética , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Humanos , Lípidos/genética , Lipogénesis/genética , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , ARN Mensajero/metabolismo , Transducción de Señal
13.
Int J Mol Sci ; 17(11)2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27834920

RESUMEN

Metabolic syndrome (MetS) is established as the combination of central obesity and different metabolic disturbances, such as insulin resistance, hypertension and dyslipidemia. This cluster of factors affects approximately 10%-50% of adults worldwide and the prevalence has been increasing in epidemic proportions over the last years. Thus, dietary strategies to treat this heterogenic disease are under continuous study. In this sense, diets based on negative-energy-balance, the Mediterranean dietary pattern, n-3 fatty acids, total antioxidant capacity and meal frequency have been suggested as effective approaches to treat MetS. Furthermore, the type and percentage of carbohydrates, the glycemic index or glycemic load, and dietary fiber content are some of the most relevant aspects related to insulin resistance and impaired glucose tolerance, which are important co-morbidities of MetS. Finally, new studies focused on the molecular action of specific nutritional bioactive compounds with positive effects on the MetS are currently an objective of scientific research worldwide. The present review summarizes some of the most relevant dietary approaches and bioactive compounds employed in the treatment of the MetS to date.


Asunto(s)
Dieta , Conducta Alimentaria , Síndrome Metabólico/dietoterapia , Síndrome Metabólico/prevención & control , Dieta Mediterránea , Fibras de la Dieta/administración & dosificación , Metabolismo Energético , Ácidos Grasos Omega-3/administración & dosificación , Índice Glucémico , Humanos , Síndrome Metabólico/metabolismo , Fenómenos Fisiológicos de la Nutrición
14.
J Pharmacol Exp Ther ; 353(2): 433-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25758919

RESUMEN

Ellagic acid (EA) and some derivatives have been reported to inhibit cancer cell proliferation, induce cell cycle arrest, and modulate some important cellular processes related to cancer. This study aimed to identify possible structure-activity relationships of EA and some in vivo derivatives in their antiproliferative effect on both human colon cancer and normal cells, and to compare this activity with that of other polyphenols. Our results showed that 4,4'-di-O-methylellagic acid (4,4'-DiOMEA) was the most effective compound in the inhibition of colon cancer cell proliferation. 4,4'-DiOMEA was 13-fold more effective than other compounds of the same family. In addition, 4,4'-DiOMEA was very active against colon cancer cells resistant to the chemotherapeutic agent 5-fluoracil, whereas no effect was observed in nonmalignant colon cells. Moreover, no correlation between antiproliferative and antioxidant activities was found, further supporting that structure differences might result in dissimilar molecular targets involved in their differential effects. Finally, microarray analysis revealed that 4,4'-DiOMEA modulated Wnt signaling, which might be involved in the potential antitumor action of this compound. Our results suggest that structural-activity differences between EA and 4,4'-DiOMEA might constitute the basis for a new strategy in anticancer drug discovery based on these chemical modifications.


Asunto(s)
Anticarcinógenos/química , Anticarcinógenos/farmacología , Neoplasias del Colon/patología , Ácido Elágico/análogos & derivados , Ácido Elágico/química , Ácido Elágico/farmacología , Proteínas Wnt/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Humanos , Vía de Señalización Wnt/efectos de los fármacos
15.
Nutr Cancer ; 67(8): 1221-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26452641

RESUMEN

Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Rosmarinus/química , Abietanos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica , Antioxidantes , Neoplasias de la Mama/tratamiento farmacológico , Cinamatos/uso terapéutico , Depsidos/uso terapéutico , Interacciones Farmacológicas , Europa (Continente) , Humanos , Fitoterapia , Extractos Vegetales/química , Triterpenos/uso terapéutico , Estados Unidos , United States Food and Drug Administration , Ácido Rosmarínico , Ácido Ursólico
16.
Electrophoresis ; 35(11): 1719-27, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24615943

RESUMEN

Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Receptores ErbB/metabolismo , Extractos Vegetales/farmacología , Receptores de Estrógenos/metabolismo , Rosmarinus/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Extractos Vegetales/aislamiento & purificación , Transducción de Señal/efectos de los fármacos
17.
Biomaterials ; 304: 122409, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052135

RESUMEN

There is increasing interest in modulating the redox homeostasis of tumors since high levels of reactive oxygen species (ROS) make them more vulnerable to changes in these species. Nanomedicine offers promise in this context as such applications may provoke biological responses that induce ROS production. Indeed, iron oxide nanoparticles (IONPs) can induce ROS accumulation through the so-called Fenton reaction of iron, further augmenting the ROS in tumors and overloading the antioxidant system beyond its capacity, thereby driving oxidative stress to a level that is incompatible with cell survival. Here, three different coatings for IONPs were compared to assess their intrinsic capacity to induce ROS production in cells. Of these coatings, dimercaptosuccinic acid-coated IONPs (DMSA-NPs) provoked the strongest ROS production, which was associated with the ability to reprogram the metabolism of cancer cells. This latter phenomenon involved shutting-down oxidative phosphorylation (OXPHOS), shifting mitochondrial morphology towards a more elongated phenotype, reducing the total mitochondrial mass and ultimately, blocking cell proliferation by inducing G0/G1 cell cycle arrest. Consequently, the data obtained highlights the importance of studying the chemical properties of IONPs, presenting DMSA-NPs as a novel tool to induce oxidative stress in cancer cells and alter their cell fate.


Asunto(s)
Compuestos Férricos , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Compuestos Férricos/química , Estrés Oxidativo , División Celular , Succímero , Nanopartículas Magnéticas de Óxido de Hierro
18.
Front Bioeng Biotechnol ; 12: 1256190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576446

RESUMEN

Background: Altered lipid metabolism in cancer is associated to dissemination and prognosis. Bioactive compounds naturally occurring in Achillea millefolium L. (yarrow) have been reported to exert antitumour activities. Food biotechnology may provide on-demand mixtures of bioactive compounds with complementary activities in cancer treatment. Methods: Supercritical-antisolvent-precipitation (SAS) has been applied to fractionate the bioactive compounds from an Ultrasound-Assisted-Extraction yarrow extract resulting in two extracts with distinct polarity, yarrow-precipitate-(PP) and yarrow-separator-(Sep). Total phenolic content and relevant essential oils have been characterized. Antioxidant, anti-inflammatory and antiproliferative activities have been compared. Moreover, the effect on the inhibition of colorectal cancer cells' bioenergetics has been evaluated. Results: Yarrow-PP exerted the highest antioxidant activity, even higher than the complete UAE-yarrow extract, meanwhile yarrow-Sep showed the highest anti-inflammatory activity, even higher than the complete UAE-yarrow extract. Interestingly, yarrow-Sep inhibited key lipid metabolic targets in CRC cells extensively shown to be implicated in cancer dissemination and prognosis -SREBF1, FASN, ABCA1 and HMGCR- and epithelial to mesenchymal targets-CDH1, ATP1B1, CDH2 and Vimentin-augmenting cell adhesion. Conclusions: In summary, SAS technology has been applied to provide a novel combination of bioactive compounds, yarrow-Sep, which merits further research to be proposed as a potential complementary nutraceutical in the treatment of CRC.

19.
J Nutr Health Aging ; 28(7): 100289, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865737

RESUMEN

OBJECTIVES: Innovative precision dietary procedures are required to promote healthy aging. This study aimed to evaluate the effects of a personalised strategy based on the inclusion of individualised foods and digital tools on overall health status and quality of life within a follow-up of 3 months in older adults with overweight or obesity. METHODS: 127 men and women aged between 50 and 80 years with overweight/obesity participated in the study-between January 2020 and September 2020 at the Center for Nutrition Research-University of Navarra and IMDEA-ALIMENTACIÓN-and were randomly assigned to a usual-care group (standard recommendations) or precision group (precision nutrition strategy based on the inclusion of individualised foods and a mobile application). Anthropometry, body fat percentage, biochemical parameters, diet, and quality of life (SF-36 Health Survey) were assessed at baseline and after 3 months. RESULTS: Both strategies were found to improve overall metabolic health; however, the precision approach demonstrated significantly better outcomes. The precision strategy reduced body weight at 3 months (-4.3 kg; p < 0.001) with significant improvements in body fat percentage, blood pressure and general metabolic health (glycated haemoglobin; alanine aminotransferase; aspartate aminotransferase; hepatic steatosis index) in comparison with the standard recommendations. The precision approach significantly enhanced the quality of life (SF-36) of individuals, with additional improvements in emotional well-being (p = 0.024) and vitality (p = 0.008). Adherence to the Mediterranean diet was significantly associated with a higher quality of life and vitality. CONCLUSION: These results support the benefit of precision nutrition approaches for promoting healthy aging and emotional well-being, enhancing the quality of life in aging populations, during the COVID-19 pandemic.


Asunto(s)
Obesidad , Calidad de Vida , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Obesidad/psicología , Obesidad/dietoterapia , Obesidad/terapia , Sobrepeso/terapia , Sobrepeso/dietoterapia , Envejecimiento Saludable , Estado de Salud , COVID-19 , Estado Nutricional , Medicina de Precisión/métodos , Envejecimiento/fisiología , Dieta
20.
Pharmacol Res ; 72: 61-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23557932

RESUMEN

5-Fluorouracil (5-FU) is the most used chemotherapeutic agent in colorectal cancer. However, resistance to this drug is relatively frequent, and new strategies to overcome it are urgently needed. The aim of this work was to determine the antitumor properties of a supercritical fluid rosemary extract (SFRE), alone and in combination with 5-FU, as a potential adjuvant therapy useful for colon cancer patients. This extract has been recognized as a healthy component by the European Food Safety Authority (EFSA). The effects of SFRE both alone and in combination with 5-FU were evaluated in different human colon cancer cells in terms of cell viability, cytotoxicity, and cell transformation. Additionally, colon cancer cells resistant to 5-FU were used to assay the effects of SFRE on drug resistance. Finally, qRT-PCR was performed to ascertain the mechanism by which SFRE potentiates the effect of 5-FU. Our results show that SFRE displays dose-dependent antitumor activities and exerts a synergistic effect in combination with 5-FU on colon cancer cells. Furthermore, SFRE sensitizes 5-FU-resistant cells to the therapeutic activity of this drug, constituting a beneficial agent against both 5-FU sensitive and resistant tumor cells. Gene expression analysis indicates that the enhancement of the effect of 5-FU by SFRE might be explained by the downregulation of TYMS and TK1, enzymes related to 5-FU resistance.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Rosmarinus/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/patología , Sinergismo Farmacológico , Humanos , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA