Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Infect Dis ; 211(2): 258-66, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25070943

RESUMEN

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and activation of CD8(+) T cells is crucial for a protective immune response. Therefore, the identification of antigens with major histocompatibility complex class I epitopes is a crucial step for vaccine development against T. cruzi. Our aim was to identify novel antigens and epitopes by immunoinformatics analysis of the parasite proteome (12 969 proteins) and to validate their immunotherapeutic potential in infected mice. We identified 172 predicted epitopes, using NetMHC and RANKPEP. The corresponding protein sequences were reanalyzed to generate a consensus prediction, and 26 epitopes were selected for in vivo validation. The interferon γ (IFN-γ) recall response of splenocytes from T. cruzi-infected mice confirmed that 10 of 26 epitopes (38%) induced IFN-γ production. The immunotherapeutic potential of a mixture of all 10 peptides was evaluated in infected mice. The therapeutic vaccine was able to control T. cruzi infection, as evidenced by reduced parasitemia, cardiac tissue inflammation, and parasite burden and increased survival. These findings illustrate the benefits of this approach for the rapid development of a vaccine against pathogens with large genomes. The identified peptides and the proteins from which they are derived are excellent candidates for the development of a vaccine against T. cruzi.


Asunto(s)
Enfermedad de Chagas/prevención & control , Enfermedad de Chagas/terapia , Biología Computacional , Vacunas Antiprotozoos/inmunología , Vacunas Antiprotozoos/aislamiento & purificación , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunología , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones Endogámicos BALB C , Miocardio/patología , Carga de Parásitos , Parasitemia/prevención & control , Parasitemia/terapia , Bazo/inmunología , Análisis de Supervivencia
2.
Vaccine ; 40(45): 6445-6449, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36184402

RESUMEN

About 6.5 million people worldwide are afflicted by Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. The development of a therapeutic vaccine to prevent the progression of Chagasic cardiomyopathy has been proposed as an alternative for antiparasitic chemotherapy. Bioinformatics tools can predict MHC class I CD8 + epitopes for inclusion in a single recombinant protein with the goal to develop a multivalent vaccine. We expressed a novel recombinant protein Tc24-C4.10E harboring ten nonameric CD8 + epitopes and using Tc24-C4 protein as scaffold to evaluate the therapeutic effect in acute T. cruzi infection. T. cruzi-infected mice were immunized with Tc24-C4.10E or Tc24-C4 in a 50-day model of acute infection. Tc24-C4.10E-treated mice showed a decreased parasitemia compared to the Tc24-C4 (non-adjuvant) immunized mice or control group. Moreover, Tc24-C4.10E induced a higher stimulation index of CD8 + T cells producing IFNγ and IL-4 cytokines. These results suggest that the addition of the MHC Class I epitopes to Tc24-C4 can synergize the antigen-specific cellular immune responses, providing proof-of-concept that this approach could lead to the development of a promising vaccine candidate for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Ratones , Anticuerpos Antiprotozoarios , Antiparasitarios/uso terapéutico , Linfocitos T CD8-positivos , Enfermedad de Chagas/prevención & control , Citocinas , Epítopos , Interleucina-4 , Ratones Endogámicos BALB C , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos , Proteínas Recombinantes , Trypanosoma cruzi/inmunología , Vacunas Combinadas
3.
PLoS Negl Trop Dis ; 16(9): e0010258, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095001

RESUMEN

BACKGROUND: Chagas disease (CD) is caused by Trypanosoma cruzi and affects 6-7 million people worldwide. Approximately 30% of chronic patients develop chronic chagasic cardiomyopathy (CCC) after decades. Benznidazole (BNZ), one of the first-line chemotherapy used for CD, induces toxicity and fails to halt the progression of CCC in chronic patients. The recombinant parasite-derived antigens, including Tc24, Tc24-C4, TSA-1, and TSA-1-C4 with Toll-like receptor 4 (TLR-4) agonist-adjuvants reduce cardiac parasite burdens, heart inflammation, and fibrosis, leading us to envision their use as immunotherapy together with BNZ. Given genetic immunization (DNA vaccines) encoding Tc24 and TSA-1 induce protective immunity in mice and dogs, we propose that immunization with the corresponding recombinant proteins offers an alternative and feasible strategy to develop these antigens as a bivalent human vaccine. We hypothesized that a low dose of BNZ in combination with a therapeutic vaccine (TSA-1-C4 and Tc24-C4 antigens formulated with a synthetic TLR-4 agonist-adjuvant, E6020-SE) given during early chronic infection, could prevent cardiac disease progression and provide antigen-specific T cell immunity. METHODOLOGY/ PRINCIPAL FINDINGS: We evaluated the therapeutic vaccine candidate plus BNZ (25 mg/kg/day/7 days) given on days 72 and 79 post-infection (p.i) (early chronic phase). Fibrosis, inflammation, and parasite burden were quantified in heart tissue at day 200 p.i. (late chronic phase). Further, spleen cells were collected to evaluate antigen-specific CD4+ and CD8+ T cell immune response, using flow cytometry. We found that vaccine-linked BNZ treated mice had lower cardiac fibrosis compared to the infected untreated control group. Moreover, cells from mice that received the immunotherapy had higher stimulation index of antigen-specific CD8+Perforin+ T cells as well as antigen-specific central memory T cells compared to the infected untreated control. CONCLUSIONS: Our results suggest that the bivalent immunotherapy together with BNZ treatment given during early chronic infection protects BALB/c mice against cardiac fibrosis progression and activates a strong CD8+ T cell response by in vitro restimulation, evidencing the induction of a long-lasting T. cruzi-immunity.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Vacunas de ADN , Adyuvantes Inmunológicos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Perros , Fibrosis , Humanos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Nitroimidazoles , Perforina , Proteínas Recombinantes , Receptor Toll-Like 4 , Trypanosoma cruzi/genética , Vacunas Combinadas/uso terapéutico
4.
Trop Med Int Health ; 15(1): 77-86, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19912593

RESUMEN

OBJECTIVE: Chagas disease is a major vector-borne parasitic disease in Latin America, primarily transmitted to humans by triatomine vectors. Non-domiciliated triatomine species such as Triatoma dimidiata in the Yucatan peninsula, Mexico, can transiently invade houses and are emerging as a major challenge to control Trypanosoma cruzi transmission to humans. We analyzed the spatio-temporal spreading of house infestation by T. dimidiata in four rural villages. METHODS: Triatomines were collected in four rural villages over a 2 years period, and the spatio-temporal patterns of infestation were analyzed. RESULTS: Triatomines were consistently more abundant at the periphery of villages than in centers, indicating a much higher risk of T. cruzi transmission at the periphery. Male T. dimidiata were found further in the center of the village, while females remained closer to the periphery, suggesting differential dispersal capabilities between sexes, although the timing of dispersal appeared identical. Surprisingly, infected females were consistently collected in houses much further from the surrounding bushes than non-infected females, while the distribution of males was unaffected by their T. cruzi infection status, suggesting an increased dispersal capability in infected females. CONCLUSION: The spatial structure of infestation should be taken into account for the prioritization of vector control activities within villages, and spatially targeted interventions may be explored. A potential vector manipulation by T. cruzi, observed for the first time in triatomines, may favor parasite transmission to new hosts.


Asunto(s)
Enfermedad de Chagas/veterinaria , Vivienda/estadística & datos numéricos , Insectos Vectores/crecimiento & desarrollo , Triatoma/crecimiento & desarrollo , Trypanosoma cruzi/fisiología , Animales , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Femenino , Sistemas de Información Geográfica , Interacciones Huésped-Parásitos , Insectos Vectores/parasitología , Masculino , México/epidemiología , Dinámica Poblacional , Salud Rural/estadística & datos numéricos , Estaciones del Año , Factores Sexuales , Agrupamiento Espacio-Temporal , Triatoma/parasitología , Trypanosoma cruzi/aislamiento & purificación
5.
Proteomics ; 9(5): 1293-301, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19206109

RESUMEN

Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8(+) T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5-8 different algorithms allowed the identification of 78 class I CD8(+) epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNgamma production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito T/inmunología , Leishmania major/inmunología , Proteoma/análisis , Proteoma/inmunología , Vacunas/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/análisis , Epítopos de Linfocito T/genética , Genoma , Humanos , Leishmania major/genética , Ratones , Ratones Endogámicos BALB C , Péptidos/administración & dosificación , Péptidos/química , Péptidos/inmunología , Vacunación
6.
Vet Parasitol ; 162(1-2): 151-5, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19324497

RESUMEN

Chagas disease is caused by Trypanosoma cruzi and dogs are an important reservoir of the parasite as well as a good model for the study of the pathogenesis of the disease. We aimed here at characterizing the immunopathology of naturally infected dogs in Merida, Yucatan, Mexico. Following an initial screening for T. cruzi seropositive stray dogs, we examined 9 seropositive and 10 seronegative animals. High lymphocytes and low monocytes counts were observed in peripheral blood from seropositives dogs. Three of nine seropositive dogs presented electrocardiographic alterations including right bundle branch block, sinusal block and QRS complex alterations and some right ventricle enlargement was noted. Histopathologic analysis of cardiac walls revealed significant inflammation with a clear tropism for the right ventricle, although most walls were affected. Seropositive dogs presented low IgG1 and high IgG2 levels. Higher IgG1 levels were associated with increased cardiac index and myocarditis, suggesting that a Th2 immune response leads to susceptibility and increased disease severity. These observations shed some light on the mechanisms of pathogenesis of Chagas disease in dogs, and provide a good framework for the evaluation of novel drugs and vaccines in this animal model.


Asunto(s)
Enfermedad de Chagas/veterinaria , Enfermedades de los Perros/inmunología , Trypanosoma cruzi , Animales , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/patología , ADN Protozoario/análisis , Enfermedades de los Perros/patología , Perros , Corazón/parasitología , Inmunoglobulina G/sangre
7.
Parasit Vectors ; 12(1): 572, 2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31783778

RESUMEN

BACKGROUND: In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little effort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more effective control strategies. We identified the blood meals of a large sample of T. dimidiata bugs collected in different ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. METHODS: A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identification, we used a molecular assay based on cloning and sequencing following PCR amplification with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. RESULTS: Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical difference between bugs from the villages or from sylvatic ecotopes. Sixteen vertebrate species including domestic, synanthropic and sylvatic animals, were identified as blood meal sources for T. dimidiata. Human, dog and cow were the three main species identified, in bugs collected in the villages as well as in sylvatic ecotopes. Importantly, dog was highlighted as the main blood meal source after human. Dog was also the most frequently identified animal together with human within single bugs, and tended to be associated with the infection of the bugs. CONCLUSIONS: Dog, human and cow were identified as the main mammals involved in the connection of sylvatic and domestic transmission cycles in the Yucatán Peninsula, Mexico. Dog appeared as the most important animal in the transmission pathway of T. cruzi to humans, but other domestic and synanthropic animals, which most were previously reported as important hosts of T. cruzi in the region, were evidenced and should be taken into account as part of integrated control strategies aimed at disrupting parasite transmission.


Asunto(s)
Sangre , Enfermedad de Chagas/transmisión , Triatoma/parasitología , Trypanosoma cruzi/aislamiento & purificación , Animales , Bovinos , Perros , Femenino , Humanos , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Masculino , México , Triatoma/fisiología
8.
Hum Vaccin Immunother ; 15(1): 210-219, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30192702

RESUMEN

A therapeutic vaccine for human Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is under development based on the success of vaccinating mice with DNA constructs expressing the antigens Tc24 and Tc-TSA-1. However, because DNA and nucleic acid vaccines produce less than optimal responses in humans, our strategy relies on administering a recombinant protein-based vaccine, together with adjuvants that promote Th1-type immunity. Here we describe a process for the purification and refolding of recombinant TSA-1 expressed in Escherichia coli. The overall yield (20-25%) and endotoxin level of the purified recombinant TSA-1 (rTSA-1) is suitable for pilot scale production of the antigen for use in phase 1 clinical trials. Mice infected with T. cruzi were treated with rTSA-1, either alone or with Toll-like receptor 4 (TLR-4) agonist adjuvants including monophosphoryl lipid A (MPLA), glucopyranosyl lipid A (GLA, IDRI), and E6020 (EISEI, Inc). TSA-1 with the TLR-4 agonists was effective at reducing parasitemia relative to rTSA-1 alone, although it was difficult to discern a therapeutic effect compared to treatment with TLR-4 agonists alone. However, rTSA-1 with a 10 ug dose of MPLA optimized reductions in cardiac tissue inflammation, which were significantly reduced compared to MPLA alone. It also elicited the lowest parasite burden and the highest levels of TSA-1-specific IFN-gamma levels and IFN-gamma/IL-4 ratios. These results warrant the further evaluation of rTSA-1 in combination with rTc24 in order to maximize the therapeutic effect of vaccine-linked chemotherapy in both mice and non-human primates before advancing to clinical development.


Asunto(s)
Enfermedad de Chagas/terapia , Inmunoterapia/métodos , Vacunas Antiprotozoos/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/inmunología , Femenino , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Parasitemia/prevención & control , Vacunas Antiprotozoos/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Células TH1/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/administración & dosificación
9.
Sci Rep ; 8(1): 4140, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29515202

RESUMEN

Trypanosoma cruzi is the agent of Chagas disease, transmitted by hematophagous triatomine vectors. Establishing transmission cycles is key to understand the epidemiology of the disease, but integrative assessments of ecological interactions shaping parasite transmission are still limited. Current approaches also lack sensitivity to assess the full extent of this ecological diversity. Here we developed a metabarcoding approach based on next-generation sequencing to identify triatomine gut microbiome, vertebrate feeding hosts, and parasite diversity and their potential interactions. We detected a dynamic microbiome in Triatoma dimidiata, including 23 bacterial orders, which differed according to blood sources. Fourteen vertebrate species served as blood sources, corresponding to domestic, synantropic and sylvatic species, although four (human, dog, cow and mice) accounted for over 50% of blood sources. Importantly, bugs fed on multiple hosts, with up to 11 hosts identified per bug, indicating very frequent host-switching. A high clonal diversity of T. cruzi was detected, with up to 20 haplotypes per bug. This analysis provided much greater sensitivity to detect multiple blood meals and multiclonal infections with T. cruzi, which should be taken into account to develop transmission networks, and characterize the risk for human infection, eventually leading to a better control of disease transmission.


Asunto(s)
Biodiversidad , Enfermedad de Chagas , Código de Barras del ADN Taxonómico , Insectos Vectores , Triatoma , Trypanosoma cruzi/genética , Animales , Bovinos , Enfermedad de Chagas/genética , Enfermedad de Chagas/transmisión , Perros , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Insectos Vectores/genética , Insectos Vectores/parasitología , Ratones , Triatoma/genética , Triatoma/parasitología
10.
PLoS Negl Trop Dis ; 12(7): e0006605, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29965992

RESUMEN

Non-domiciliated intrusive triatomine vectors are responsible for a low but significant transmission of Trypanosoma cruzi to humans. Their control is a challenge as insecticide spraying is of limited usefulness, and alternative strategies need to be developed for a sustainable control. We performed a non-randomized controlled trial of an Ecohealth intervention based on window insect screens and community participation to reduce house infestation by Triatoma dimidiata in two rural villages in Yucatan, Mexico. Efficacy of the intervention was measured over a three years follow-up period and entomological indicators showed that the proportion of triatomines found inside houses was significantly reduced in houses with insect screens, which effectively kept more bugs on the outside of houses. Using a previously developed model linking entomological data to the prevalence of infection in human, we predicted that the intervention would lead to a 32% reduction in yearly incidence and in the prevalence of T. cruzi infection. The cost for the coverage of all the windows of a house was of comparable magnitude to what families currently spend on various domestic insecticide, and most screens were still in good conditions after three years. In conclusion, the Ecohealth approach proposed here is effective for the long-term and sustainable control of intrusive T. dimidiata vectors in the Yucatan peninsula, Mexico. This strategy may also be easily adapted to other intrusive triatomine species as well as other regions/countries with comparable eco-epidemiological settings, and would be an excellent component of a larger integrated program for the control of a variety of other vector-borne diseases, bringing additional benefits to the communities. Our results should encourage a further scaling-up of our implementation strategy in additional villages in the region.


Asunto(s)
Enfermedad de Chagas/prevención & control , Control de Insectos/métodos , Triatoma/fisiología , Trypanosoma cruzi/fisiología , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Vivienda , Humanos , Insectos Vectores/efectos de los fármacos , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Insecticidas/farmacología , México , Salud Rural , Triatoma/efectos de los fármacos , Triatoma/parasitología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/parasitología
11.
Am J Trop Med Hyg ; 98(2): 478-485, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210352

RESUMEN

Compared with South America, there is a lack of epidemiologic studies about the risk of congenital transmission of Trypanosoma cruzi in Central America and Mexico. It has been suggested that T. cruzi genotypes might differ by region and that congenital transmission might vary according to the parasite's genotype. Our objective was to compare T. cruzi congenital transmission rates in three countries. We performed an observational prospective study in 2011-2014 enrolling women at delivery in one hospital in Argentina, two hospitals in Honduras, and two hospitals in Mexico. Congenital T. cruzi infection was defined as the presence of one or more of the following criteria: presence of parasites in cord blood (direct parasitological microscopic examination) with positive polymerase chain reaction (PCR) in cord blood, presence of parasites in infant's blood at 4-8 weeks (direct parasitological microscopic examination), and persistence of T. cruzi-specific antibodies at 10 months, as measured by at least two tests. Among 28,145 enrolled women, 347 had at least one antibody rapid test positive in cord blood and a positive enzyme-linked immunosorbent assay in maternal blood. PCR in maternal blood was positive in 73.2% of the cases, and genotyping identified a majority of non-TcI in the three countries. We found no (0.0%; 95% confidence interval [CI]: 0.0, 2.0) confirmed congenital case in Honduras. Congenital transmission was 6.6% (95% CI: 3.1, 12.2) in Argentina and 6.3% (95% CI: 0.8, 20.8) in Mexico. Trypanosoma cruzi non-TcI predominated and risks of congenital transmission were similar in Argentina and Mexico.


Asunto(s)
Enfermedad de Chagas/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Adulto , Enfermedad de Chagas/epidemiología , Femenino , Sangre Fetal/parasitología , Honduras/epidemiología , Humanos , Recién Nacido , México/epidemiología , Embarazo , Estudios Prospectivos , Estadísticas no Paramétricas , Trypanosoma cruzi/patogenicidad
12.
Am J Trop Med Hyg ; 76(5): 930-7, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17488918

RESUMEN

In the Yucatán Peninsula of Mexico, the main vector of Chagas disease is Triatoma dimidiata. Field studies suggest that natural transmission occurs through transient and seasonal invasion of houses by sylvatic/peridomestic triatomines, rather than through persistent domiciliated bug populations. We investigated the genetic structure of T. dimidiata populations, using morphometry and microsatellite markers, to assess dispersal of individuals in this triatomine species and to understand the dynamics of domestic infestation. We observed low phenotypic and genetic differentiation among populations from different villages, with an FST of only 0.0553, which suggested a weak but significant population structure at this level. Similarly low but significant differences were observed among populations from the same village but different biotopes (sylvatic, peridomestic, and domestic), with FST values ranging from 0.0096 to 0.0455. These data suggested elevated dispersal of bugs between biotopes (Nm = 5-25), which was confirmed by likelihood and Bayesian assignment tests. A proportion of bugs collected within domiciles were significantly assigned to peridomestic and sylvatic areas. This study showed that T. dimidiata has important dispersal capabilities that can explain the seasonal pattern of domicile infestation by peridomestic and sylvatic bugs. Therefore, dispersal should be taken into account in the design of effective vector control strategies.


Asunto(s)
Insectos Vectores/fisiología , Repeticiones de Microsatélite/genética , Triatoma/fisiología , Animales , Enfermedad de Chagas/transmisión , Demografía , Femenino , Frecuencia de los Genes , Genotipo , Insectos Vectores/anatomía & histología , Insectos Vectores/genética , Masculino , México , Triatoma/anatomía & histología , Triatoma/genética
13.
FEMS Immunol Med Microbiol ; 50(3): 333-41, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17521394

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in most of Latin America. A key priority is the development of new treatments, due to the poor efficacy of current ones. We report here the comparative evaluation of therapeutic DNA vaccines encoding various T. cruzi antigens. ICR mice infected with 500 parasites intraperitoneally were treated at 5 and 12 days postinfection with 20 microg of plasmid DNA encoding T. cruzi antigens TSA-1, TS, ASP-2-like, Tc52 or Tc24. Treatment with plasmid encoding TS and/or ASP-2-like antigens had no significant effect on parasitemia or survival. Treatment with Tc52 DNA significantly reduced parasitemia, as well as cardiac parasite burden, and improved survival, although myocarditis was not significantly affected. Finally, treatment with plasmids encoding Tc24 and TSA-1 induced the most complete control of disease as evidenced by significant reductions in parasitemia, mortality, myocarditis and heart parasite burden. These data demonstrate that therapeutic vaccine efficacy is dependent on the antigen and suggest that DNA vaccines encoding Tc24, TSA-1, and Tc52 represent the best candidates for further studies of a therapeutic vaccine against Chagas disease.


Asunto(s)
Cardiomiopatía Chagásica/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Vacunas Antiprotozoos/uso terapéutico , Trypanosoma cruzi , Vacunas de ADN/uso terapéutico , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Cardiomiopatía Chagásica/patología , Femenino , Ratones , Ratones Endogámicos ICR , Parasitemia/tratamiento farmacológico , Plásmidos/genética , Vacunas Antiprotozoos/genética , Vacunas de ADN/genética
14.
Immunol Lett ; 103(2): 186-91, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16378645

RESUMEN

Previous work showed that immunotherapy with a DNA vaccine encoding Trypanosoma cruzi antigen TSA-1 reduced cardiac tissue damage and improved survival in mice when administered during the acute or chronic phases of T. cruzi infection. In the present study, we investigated changes in T-cell populations induced by DNA vaccine immunotherapy. ICR mice were infected with 500 T. cruzi blood trypomastigotes and treated during the acute or chronic phases with two 100 microg doses of DNA vaccine. Analysis of stained splenocytes by flow cytometry indicated that the therapeutic vaccine induced a rapid increase in the number of CD4+ and CD8+ T cells in both the acute and chronic phases. Also, there was a rapid increase in T. cruzi-specific IFNgamma-producing CD8+ T cells following treatment during the chronic phase. The effects of these changes on the control of infection required longer time periods to be detectable but resulted in a reduction in myocarditis and T. cruzi parasite burden in both phases of the infection, as assessed by histopathologic analysis and semi-quantitative PCR detection of T. cruzi in cardiac tissue. These results suggest that DNA vaccines that induce CD8+ T-cells activity and IFNgamma production, would be good candidates for effective therapeutic vaccination against T. cruzi infection.


Asunto(s)
Enfermedad de Chagas/terapia , Linfocitos T/inmunología , Trypanosoma cruzi/inmunología , Vacunas de ADN/uso terapéutico , Enfermedad Aguda , Animales , Enfermedad de Chagas/inmunología , Enfermedad Crónica , Ratones , Ratones Endogámicos ICR , Factores de Tiempo , Vacunas de ADN/inmunología
15.
Parasit Vectors ; 9(1): 568, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809930

RESUMEN

BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, is mainly transmitted by blood-sucking bugs called triatomines. In the Yucatán Peninsula, Mexico, the main vector of T. cruzi is Triatoma dimidiata. While this species may colonize houses in other regions, it is mostly intrusive in Yucatán: it generally lives in sylvan and peridomestic areas, and frequently enters inside homes, likely attracted by potential vertebrate hosts, without establishing colonies. Bugs collected inside homes have a low nutritional status, suggesting that they cannot efficiently feed inside these houses. We hypothesized that this low nutritional status and limited colonization may be associated, at least in part, with the local practice in Mayan communities to sleep in hammocks instead of beds, as this sleeping habit could be an obstacle for triatomines to easily reach human hosts, particularly for nymphal instars which are unable to fly. METHODS: We used an experimental chamber in which we placed a miniature bed in one side and a miniature hammock on the other side. After placing a mouse enclosed in a small cage on the bed and another one in the hammock as baits, T. dimidiata bugs were released in the chamber and their activity was video recorded during the night. RESULTS: T. dimidiata adults and nymphs were able to reach the mouse in bed significantly more often than the mouse in hammock (Binomial test, P < 0.0001). Moreover, females reached the mice twice as often as did males. Most of the adult bugs reached the mouse in bed by walking, while they reached the mouse in hammock by flying. Nymphs presented a host-seeking index ten times lower than adult bugs and were also able, on a few occasions (4/132 released bugs), to reach the mouse in hammock. CONCLUSIONS: We conclude that sleeping in hammocks, as done in rural Yucatán, makes human hosts less accessible to the bugs. This, combined with other factors (e.g. absence of domestic animals sleeping inside houses), may explain, at least in part, the low nutritional status of bugs collected inside homes and the limited colonization of houses by T. dimidiata in the region. Nevertheless, while this sleeping habit limits contact with the bugs, it does not confer complete protection as adult bugs as well as some nymphs were still able to reach the host in hammock in our study.


Asunto(s)
Conducta Alimentaria , Conducta de Búsqueda de Hospedador , Insectos Vectores , Sueño , Triatoma/fisiología , Animales , México , Ratones
16.
Infect Genet Evol ; 41: 207-212, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27079265

RESUMEN

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying.


Asunto(s)
Enfermedad de Chagas/transmisión , ADN Intergénico/genética , Especies Introducidas , Estadios del Ciclo de Vida/genética , Filogenia , Triatoma/genética , Animales , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Ecosistema , Ecuador/epidemiología , Conducta Alimentaria/fisiología , Femenino , Genotipo , Humanos , Control de Insectos , Insectos Vectores , Masculino , Epidemiología Molecular , Rhodnius/parasitología , Triatoma/clasificación , Triatoma/crecimiento & desarrollo , Triatoma/parasitología , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología
17.
Int J Parasitol Drugs Drug Resist ; 6(1): 74-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27054066

RESUMEN

Parasitic diseases cause ∼ 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs.


Asunto(s)
Leishmania/efectos de los fármacos , Péptidos/síntesis química , Péptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores , Tripanocidas/farmacología , Trypanosoma/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Diseño de Fármacos , Leishmania/química , Leishmania/genética , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Ratones , Parasitemia/tratamiento farmacológico , Péptidos/administración & dosificación , Proteínas Protozoarias/química , Receptores de Cinasa C Activada , Receptores de Superficie Celular/química , Alineación de Secuencia , Tripanocidas/administración & dosificación , Tripanocidas/química , Trypanosoma/genética , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/parasitología
18.
Am J Trop Med Hyg ; 73(6): 1019-25, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16354805

RESUMEN

Hurricanes can have devastating effects on health and may directly modulate vector-borne diseases. Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi and transmitted by triatomine bugs, and the effect of hurricanes on these bugs is largely unknown. We thus performed a detailed study of the changes in Triatoma dimidiata geographic distribution and infection rates after Hurricane Isidore devastated the Yucatán Peninsula in September 2002. Bugs were collected in 34 villages from the entire peninsula, during a year, starting 3 months after the hurricane. Pre- and posthurricane bug collections were compared to assess changes. The most notable effect was a large increase in domestic abundance of T. dimidiata during the 6 months after the hurricane. This increase was maximum along the path of the hurricane. These results suggest that vector control programs should be implemented along the path of hurricanes to prevent an increase in Chagas disease transmission risk in the ensuing months.


Asunto(s)
Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/transmisión , Desastres , Insectos Vectores/parasitología , Triatoma/parasitología , Trypanosoma cruzi/patogenicidad , Animales , Enfermedad de Chagas/etiología , Humanos , México/epidemiología , Factores de Riesgo , Estaciones del Año
19.
BMC Res Notes ; 8: 614, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26510987

RESUMEN

BACKGROUND: Publishing negative seroprevalence studies not only helps to have more accurate seroprevalence estimates but also allows calculating the specificity of the diagnostic tests used. We performed a population-based Trypanosoma cruzi seroprevalence survey in a community in central Mexico. RESULTS: We surveyed 204 women and children and collected blood by finger prick. We performed rapid tests (Stat-Pak, Chembio, Inc., Medford, New York) and recombinant Chagas ELISA tests v3.0 (Wiener, Rosario, Argentina). All rapid tests and all ELISA tests were negative. CONCLUSION: The rapid test had 100 % of specificity compared to the ELISA.


Asunto(s)
Pruebas Diagnósticas de Rutina/normas , Ensayo de Inmunoadsorción Enzimática/normas , Trypanosoma cruzi/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/parasitología , Niño , Preescolar , Femenino , Humanos , México/epidemiología , Persona de Mediana Edad , Embarazo , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
20.
Trans R Soc Trop Med Hyg ; 109(2): 143-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25604765

RESUMEN

BACKGROUND: Non-domiciliated (intrusive) triatomine vectors remain a challenge for the sustainability of Chagas disease vector control as these triatomines are able to transiently (re-)infest houses. One of the best-characterized examples is Triatoma dimidiata from the Yucatan peninsula, Mexico, where adult insects seasonally infest houses between March and July. METHODS: We focused our study on three rural villages in the state of Yucatan, Mexico, in which we performed a situation analysis as a first step before the implementation of an ecohealth (ecosystem approach to health) vector control intervention. RESULTS: The identification of the key determinants affecting the transient invasion of human dwellings by T. dimidiata was performed by exploring associations between bug presence and qualitative and quantitative variables describing the ecological, biological and social context of the communities. We then used a participatory action research approach for implementation and evaluation of a control strategy based on window insect screens to reduce house infestation by T. dimidiata. CONCLUSIONS: This ecohealth approach may represent a valuable alternative to vertically-organized insecticide spraying. Further evaluation may confirm that it is sustainable and provides effective control (in the sense of limiting infestation of human dwellings and vector/human contacts) of intrusive triatomines in the region.


Asunto(s)
Enfermedad de Chagas/prevención & control , Vivienda/normas , Control de Insectos/organización & administración , Triatoma/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad , Animales , Enfermedad de Chagas/transmisión , Reservorios de Enfermedades , Ecosistema , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores , México/epidemiología , Innovación Organizacional , Vigilancia de la Población , Características de la Residencia , Población Rural , Estaciones del Año , Triatoma/parasitología , Trypanosoma cruzi/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA