Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 26(5): 106662, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37192975

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary artery pressure caused by pathological pulmonary artery remodeling. Here, we demonstrate that endothelial cell (EC) senescence plays a negative role in pulmonary hypertension via juxtacrine interaction with smooth muscle cells (SMCs). By using EC-specific progeroid mice, we discovered that EC progeria deteriorated vascular remodeling in the lungs, and exacerbated pulmonary hypertension in mice. Mechanistically, senescent ECs overexpressed Notch ligands, which resulted in increased Notch signaling and activated proliferation and migration capacities in neighboring SMCs. Pharmacological inhibition of Notch signaling reduced the effects of senescent ECs on SMCs functions in vitro, and improved the worsened pulmonary hypertension in EC-specific progeroid mice in vivo. Our findings show that EC senescence is a critical disease-modifying factor in PAH and that EC-mediated Notch signaling is a pharmacotherapeutic target for the treatment of PAH, particularly in the elderly.

2.
Biology (Basel) ; 11(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625487

RESUMEN

Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.

3.
Kobe J Med Sci ; 67(3): E84-E91, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35367994

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterized by progressive lung fibrosis and obliteration of normal alveolar structures. Myofibroblasts play a central role in the progression of IPF by producing excess amount of extracellular matrix, and these myofibroblasts show heterogenous origins including resident fibroblasts, epithelial cells via epithelial to mesenchymal transition (EMT) and endothelial cell (EC) via endothelial to mesenchymal transition (EndMT). Although lung aging has been considered as essential mechanisms through abnormal activation of epithelial cells and fibroblasts, little is known about a role of EC senescence in the pathogenesis of IPF. Here, we reveal a detrimental role of EC senescence in IPF by utilizing unique EC-specific progeroid mice. EC-specific progeroid mice showed deteriorated pulmonary fibrosis in association with an accelerated EndMT in the lungs after intratracheal bleomycin instillation. We further confirmed that premature senescent ECs were susceptible to EndMT in vitro. Because senescent cells affect nearby cells through senescence-associated secretory phenotype (SASP), we assessed a potential role of the EC-SASP in EMT and myofibroblastic transition of resident fibroblasts. EC-SASP enhanced the myofibroblastic transition in resident fibroblasts, while no effect was detected on EMT. Our data revealed a previously unknown role of EC senescence in the progression of IPF, and thus rejuvenating ECs and/or inhibiting EC-SASP is an attracting therapeutic strategy for the treatment of IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , Fibrosis Pulmonar Idiopática , Animales , Bleomicina , Senescencia Celular/fisiología , Células Endoteliales/patología , Fibrosis Pulmonar Idiopática/etiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA