Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes Dev ; 32(13-14): 903-908, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950491

RESUMEN

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.


Asunto(s)
Exorribonucleasas/genética , Macrosomía Fetal/genética , Factor II del Crecimiento Similar a la Insulina/genética , Regulación hacia Arriba , Tumor de Wilms/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Mutación , Nefronas/citología , Nefronas/fisiopatología , Células Madre
2.
Development ; 144(22): 4148-4158, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28993400

RESUMEN

Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and ß subunits; crucial integrins in the kidney collecting system express the ß1 subunit. The ß1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the ß1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the ß1 integrin subunit NPxY motif.


Asunto(s)
Integrina beta1/metabolismo , Morfogénesis , Talina/metabolismo , Uréter/citología , Uréter/embriología , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Adhesión Celular , Membrana Celular/metabolismo , Polaridad Celular , Regulación del Desarrollo de la Expresión Génica , Integrina beta1/química , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/embriología , Ratones Endogámicos C57BL , Mutación/genética , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uréter/metabolismo
3.
Dev Biol ; 440(1): 13-21, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29705331

RESUMEN

Formation of a functional kidney depends on the balance between renewal and differentiation of nephron progenitors. Failure to sustain this balance can lead to kidney failure or stem cell tumors. For nearly 60 years, we have known that signals from an epithelial structure known as the ureteric bud were essential for maintaining this balance. More recently it was discovered that one molecule, Wnt9b, was necessary for both renewal and differentiation of the nephron progenitor cells. How one ligand signaling through one transcription factor promoted two seemingly contradictory cellular processes was unclear. In this study, we show that Wnt9b/beta-catenin signaling alone is sufficient to promote both renewal and differentiation. Moreover, we show that discrete levels of beta-catenin can promote these two disparate fates, with low levels fostering progenitor renewal and high levels driving differentiation. These results provide insight into how Wnt9b regulates distinct target genes that balance nephron progenitor renewal and differentiation.


Asunto(s)
Nefronas/fisiología , beta Catenina/metabolismo , beta Catenina/fisiología , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nefronas/embriología , Transducción de Señal/fisiología , Células Madre/metabolismo , Células Madre/fisiología , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología
5.
Nat Commun ; 13(1): 4765, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35965273

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), among the most common human genetic conditions and a frequent etiology of kidney failure, is primarily caused by heterozygous PKD1 mutations. Kidney cyst formation occurs when PKD1 dosage falls below a critical threshold. However, no framework exists to harness the remaining allele or reverse PKD1 decline. Here, we show that mRNAs produced by the noninactivated PKD1 allele are repressed via their 3'-UTR miR-17 binding element. Eliminating this motif (Pkd1∆17) improves mRNA stability, raises Polycystin-1 levels, and alleviates cyst growth in cellular, ex vivo, and mouse PKD models. Remarkably, Pkd2 is also inhibited via its 3'-UTR miR-17 motif, and Pkd2∆17-induced Polycystin-2 derepression retards cyst growth in Pkd1-mutant models. Moreover, acutely blocking Pkd1/2 cis-inhibition, including after cyst onset, attenuates murine PKD. Finally, modeling PKD1∆17 or PKD2∆17 alleles in patient-derived primary ADPKD cultures leads to smaller cysts, reduced proliferation, lower pCreb1 expression, and improved mitochondrial membrane potential. Thus, evading 3'-UTR cis-interference and enhancing PKD1/2 mRNA translation is a potentially mutation-agnostic ADPKD-arresting approach.


Asunto(s)
Quistes , MicroARNs , Riñón Poliquístico Autosómico Dominante , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPP/metabolismo , Animales , Quistes/genética , Modelos Animales de Enfermedad , Humanos , Ratones , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/genética , ARN Mensajero/genética , Canales Catiónicos TRPP/genética
6.
Cell Metab ; 33(6): 1234-1247.e7, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852874

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic disorder marked by numerous progressively enlarging kidney cysts. Mettl3, a methyltransferase that catalyzes the abundant N6-methyladenosine (m6A) RNA modification, is implicated in development, but its role in most diseases is unknown. Here, we show that Mettl3 and m6A levels are increased in mouse and human ADPKD samples and that kidney-specific transgenic Mettl3 expression produces tubular cysts. Conversely, Mettl3 deletion in three orthologous ADPKD mouse models slows cyst growth. Interestingly, methionine and S-adenosylmethionine (SAM) levels are also elevated in ADPKD models. Moreover, methionine and SAM induce Mettl3 expression and aggravate ex vivo cyst growth, whereas dietary methionine restriction attenuates mouse ADPKD. Finally, Mettl3 activates the cyst-promoting c-Myc and cAMP pathways through enhanced c-Myc and Avpr2 mRNA m6A modification and translation. Thus, Mettl3 promotes ADPKD and links methionine utilization to epitranscriptomic activation of proliferation and cyst growth.


Asunto(s)
Adenosina/análogos & derivados , Metionina/metabolismo , Metiltransferasas/metabolismo , Enfermedades Renales Poliquísticas/genética , Adenosina/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Cell Signal ; 71: 109548, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31982550

RESUMEN

PURPOSE OF REVIEW: microRNAs (miRNAs) are a class of small, evolutionarily conserved, non-coding RNAs (ncRNAs) that function as inhibitors of post-transcriptional mRNA expression. They are implicated in the pathogenesis of numerous diseases, including many common kidney conditions. In this review, we focus on how miRNAs impact autosomal dominant polycystic kidney disease (ADPKD) progression. We also discuss the feasibility of the emerging novel antisense oligonucleotides (ASOs) drug class, which includes anti-miRNA drugs, for the treatment of ADPKD. RECENT FINDINGS: Aberrant miRNA expression is observed in multiple PKD murine models and human ADPKD samples. Gain and loss-of-function studies have directly linked dysregulated miRNA activity to kidney cyst growth. The most comprehensively studied miRNA in PKD is the miR-17 family, which promotes PKD progression through the rewiring of cyst metabolism and by directly inhibiting PKD1 and PKD2 expression. This discovery has led to the development of an anti-miR-17 drug for ADPKD treatment. Other miRNAs such as miR-21, miR-193, and miR-214 are also known to regulate cyst growth by modulating cyst epithelial apoptosis, proliferation, and interstitial inflammation. SUMMARY: miRNAs have emerged as novel pathogenic regulators of ADPKD progression. Anti-miR-based drugs represent a new therapeutic modality to treat ADPKD patients.


Asunto(s)
Enfermedades Renales Poliquísticas/genética , ARN no Traducido/metabolismo , Animales , Homeostasis , Humanos , Riñón/embriología , Riñón/patología , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Enfermedades Renales Poliquísticas/terapia , ARN no Traducido/genética
8.
JCI Insight ; 5(7)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182218

RESUMEN

Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.


Asunto(s)
MicroARNs/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Transducción de Señal , Animales , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología
9.
Nat Commun ; 4: 2658, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24153433

RESUMEN

Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.


Asunto(s)
Moléculas de Adhesión Celular/genética , Células Epiteliales/metabolismo , Túbulos Renales/metabolismo , Enfermedades Renales Poliquísticas/genética , Proteína Quinasa C-alfa/genética , Canales Catiónicos TRPP/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Movimiento Celular , Polaridad Celular , Embrión de Mamíferos , Células Epiteliales/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/patología , Masculino , Ratones , Ratones Noqueados , Morfogénesis/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Unión Proteica , Proteína Quinasa C-alfa/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Canales Catiónicos TRPP/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA