Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150516

RESUMEN

The green sulfur bacteria (Chlorobiaceae) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S0, and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum, the model system for the Chlorobiaceae, both produces and consumes extracellular S0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S0, and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum1277 (CT1277) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other ChlorobiaceaeIMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


Asunto(s)
Chlorobi/genética , Chlorobi/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Sulfuros/metabolismo , Azufre/metabolismo , Oxidación-Reducción , Regiones Promotoras Genéticas , ARN/metabolismo , Análisis de Secuencia de ARN , Compuestos de Azufre/metabolismo
2.
Mol Plant Microbe Interact ; 30(7): 517-530, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28504560

RESUMEN

RNA interference (RNAi) is conserved in eukaryotic organisms, and it has been well studied in many animal and plant species and some fungal species, yet it is not well studied in fungal plant pathogens. In the rice blast fungus Magnaporthe oryzae, we examined small RNA (sRNA) and their biogenesis in the context of growth and pathogenicity. Through genetic and genomic analyses, we demonstrate that loss of a single gene encoding Dicer, RNA-dependent RNA polymerase, or Argonaute reduces sRNA levels. These three proteins are required for the biogenesis of sRNA-matching genome-wide regions (coding regions, repeats, and intergenic regions). The loss of one Argonaute reduced both sRNA and fungal virulence on barley leaves. Transcriptome analysis of multiple mutants revealed that sRNA play an important role in transcriptional regulation of repeats and intergenic regions in M. oryzae. Together, these data support that M. oryzae sRNA regulate developmental processes including, fungal growth and virulence.


Asunto(s)
Magnaporthe/genética , Interferencia de ARN , ARN de Hongos/genética , ARN Pequeño no Traducido/genética , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Magnaporthe/crecimiento & desarrollo , Magnaporthe/metabolismo , Mutación , Filogenia , Enfermedades de las Plantas/microbiología , ARN de Hongos/metabolismo , ARN Pequeño no Traducido/metabolismo
3.
Planta ; 239(1): 171-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126723

RESUMEN

The rhizospheric microbiome is comprised of many microbes, some of which reduce the virulence of their phytopathogenic neighbors; however, the mechanisms underlying these interactions are largely unknown. Rice soil isolate Pseudomonas chlororaphis EA105 strongly inhibits Magnaporthe oryzae's in vitro growth by restricting fungal diameter as well as inhibiting the formation of the appressorium, required for penetration. We were interested in elucidating M. oryzae's response to EA105 treatment, and utilized a microarray approach to obtain a global perspective of EA105 elicited changes in this pathogen. Based on this analysis, three genes of interest were knocked out in M. oryzae 70-15, and their sensitivity to EA105 treatment as well as their ability to infect rice was determined. Priming rice plants with EA105 prior to M. oryzae infection decreased lesion size, and the mutants were tested to see if this effect was retained. A null 70-15 mutant in a trichothecene biosynthesis gene showed less susceptibility to bacterial treatment, forming more appressoria than the parental type 70-15. A similar pattern was seen in a null mutant for a stress-inducible protein, MGG_03098. In addition, when this mutant was inoculated onto the leaves of EA105-primed rice plants, lesions were reduced to a greater extent than in 70-15, implicating the lack of this gene with an increased ISR response in rice. Understanding the global effect of biocontrol bacteria on phytopathogens is a key for developing successful and lasting solutions to crop loss caused by plant diseases and has the potential to greatly increase food supply.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/fisiología , Microbiología del Suelo , Agentes de Control Biológico , Técnicas de Inactivación de Genes , Mutación , Virulencia/genética
4.
BMC Genomics ; 14: 326, 2013 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-23663523

RESUMEN

BACKGROUND: The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. RESULTS: The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. CONCLUSIONS: Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.


Asunto(s)
Perfilación de la Expresión Génica , Magnaporthe/genética , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , ARN Pequeño no Traducido/genética , Estrés Fisiológico/genética , Análisis por Conglomerados , Regulación hacia Abajo , Genes Fúngicos/genética , Genómica , Mutación , Nucleótidos/genética , Transcripción Genética
5.
Bio Protoc ; 13(15): e4726, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37575383

RESUMEN

Plants elicit defense responses when exposed to pathogens, which partly contribute to the resistance of plants to Agrobacterium tumefaciens-mediated transformation. Some pathogenic bacteria have sophisticated mechanisms to counteract these defense responses by injecting Type III effectors (T3Es) through the Type III secretion system (T3SS). By engineering A. tumefaciens to express T3SS to deliver T3Es, we suppressed plant defense and enhanced plant genetic transformation. Here, we describe the optimized protocols for mobilization of T3SS-expressing plasmid to engineer A. tumefaciens to deliver proteins through T3SS and fractionation of cultures to study proteins from pellet and supernatants to determine protein secretion from engineered A. tumefaciens.

6.
Nat Commun ; 13(1): 2581, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546550

RESUMEN

Agrobacterium-mediated plant transformation (AMT) is the basis of modern-day plant biotechnology. One major drawback of this technology is the recalcitrance of many plant species/varieties to Agrobacterium infection, most likely caused by elicitation of plant defense responses. Here, we develop a strategy to increase AMT by engineering Agrobacterium tumefaciens to express a type III secretion system (T3SS) from Pseudomonas syringae and individually deliver the P. syringae effectors AvrPto, AvrPtoB, or HopAO1 to suppress host defense responses. Using the engineered Agrobacterium, we demonstrate increase in AMT of wheat, alfalfa and switchgrass by ~250%-400%. We also show that engineered A. tumefaciens expressing a T3SS can deliver a plant protein, histone H2A-1, to enhance AMT. This strategy is of great significance to both basic research and agricultural biotechnology for transient and stable transformation of recalcitrant plant species/varieties and to deliver proteins into plant cells in a non-transgenic manner.


Asunto(s)
Células Vegetales , Sistemas de Secreción Tipo III , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Vegetales/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
7.
Sci Rep ; 9(1): 13503, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534160

RESUMEN

Arabidopsis VIRE2-INTERACTING PROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsis vip2 mutants are recalcitrant to Agrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly, AtVIP2 overexpressor lines in Arabidopsis did not show an improvement in Agrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved in Agrobacterium-mediated plant transformation, AtVIP2 overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated in AtVIP2 overexpressor lines. Consistent with this observation, AtVIP2 overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role in Agrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.


Asunto(s)
Agrobacterium/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Factores Generales de Transcripción/genética , Ácido Abscísico/metabolismo , Agrobacterium/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Elementos de Respuesta , Estrés Fisiológico , Factores Generales de Transcripción/metabolismo
8.
Methods Mol Biol ; 1848: 53-66, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30182228

RESUMEN

The goal of this chapter is to provide a framework of sequential steps for small RNA (sRNA) analysis in filamentous fungi. Here, we present protocols for (1) comparative analysis of sRNAs in different conditions, (2) comparisons of sRNA libraries to RNAseq data and (3) identification and analysis of methylguanosine-capped and polyadenylated sRNAs (CPA-sRNAs). This species of small RNA is particularly interesting in Magnaporthe oryzae, as they map to transcription start and end sites of protein-coding genes. While we do not provide specific command lines for scripts, we provide a general framework for steps needed to carry out all three types of analyses, including relevant references, websites and free online tools. Screenshots are provided from our own customized interface using M. oryzae as an example, to assist the reader in visualizing many of the steps.


Asunto(s)
Magnaporthe/genética , ARN de Hongos , ARN Pequeño no Traducido , Biología Computacional/métodos , Biblioteca de Genes , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Programas Informáticos , Interfaz Usuario-Computador
9.
mBio ; 9(6)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30482829

RESUMEN

Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.IMPORTANCE Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.


Asunto(s)
Vías Biosintéticas/genética , Chlorobi/genética , Chlorobi/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Genoma Bacteriano , Glucosamina/química , Glucosamina/metabolismo , Estructura Molecular , Peso Molecular
10.
PLoS One ; 8(10): e76487, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098512

RESUMEN

Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.


Asunto(s)
Antibiosis , Proteínas Fúngicas/genética , Lysobacter/fisiología , Magnaporthe/genética , Magnaporthe/inmunología , Transcriptoma , Secuencias de Aminoácidos , Carga Bacteriana , Biología Computacional , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Tiempo
11.
Curr Opin Microbiol ; 15(6): 692-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23164582

RESUMEN

Fungal effectors have often been referred as a 'sea of diversity', but recently, experiments have shed some light onto effector biology, including discovery that unrelated fungi utilize some common methods for creating a more compatible host environment. A wheat pathogen and a rice pathogen, for example, have evolved mechanisms to suppress chitin-mediated basal defenses in their respective plant hosts. Smut fungi, on the other hand, might have evolved a unique mechanism to manipulate their host environment by altering cell metabolism. Genome mining and bioinformatics pipelines have streamlined the suite of effectors in important pathogen genomes, so researchers can make more targeted strikes on potentially important effectors. This combination of informatics and empirical studies will allow greater insight into effector function.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Factores de Virulencia/metabolismo , Biología Computacional , Enfermedades de las Plantas/microbiología , Plantas , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA