Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 324: 121386, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36868547

RESUMEN

Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.


Asunto(s)
Carbono , Máscaras , Peróxidos
2.
Quant Imaging Med Surg ; 13(10): 6827-6839, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869357

RESUMEN

Background: For respiration induced tumor displacement during a radiation therapy, a common method to prevent the extra radiation is image-guided radiation therapy. Moreover, mask region-based convolutional neural networks (Mask R-CNN) is one of the state-of-the-art (SOTA) object detection frameworks capable of conducting object classification, localization, and pixel-level instance segmentation. Methods: We developed a novel ultrasound image tracking technology based on Mask R-CNN for stable tracking of the detected diaphragm motion and applied to the respiratory motion compensation system (RMCS). For training Mask R-CNN, 1800 ultrasonic images of the human diaphragm are collected. Subsequently, an ultrasonic image tracking algorithm was developed to compute the mean pixel coordinates of the diaphragm detected by Mask R-CNN. These calculated coordinates are then utilized by the RMCS for compensation purposes. The tracking similarity verification experiment of mask ultrasonic imaging tracking algorithm (M-UITA) is performed. Results: The correlation between the input signal and the signal tracked by M-UITA was evaluated during the experiment. The average discrete Fréchet distance was less than 4 mm. Subsequently, a respiratory displacement compensation experiment was conducted. The proposed method was compared to UITA, and the compensation rates of three different respiratory signals were calculated and compared. The experimental results showed that the proposed method achieved a 6.22% improvement in compensation rate compared to UITA. Conclusions: This study introduces a novel method called M-UITA, which offers high tracking precision and excellent stability for monitoring diaphragm movement. Additionally, it eliminates the need for manual parameter adjustments during operation, which is an added advantage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA