RESUMEN
Purified vascular endothelial cell (EC) growth factor receptor-2 (VEGFR2) auto-phosphorylates upon VEGF-A occupation in vitro, arguing that VEGR2 confers its mitotic and viability signaling in and of itself. Herein, we show that, in ECs, VEGFR2 function requires concurrent C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 co-signaling. C3ar1/C5ar1 or IL-6R blockade totally abolished VEGFR2 auto-phosphorylation, downstream Src, ERK, AKT, mTOR and STAT3 activation, and EC cell cycle entry. VEGF-A augmented production of C3a/C5a/IL-6 and their receptors via a two-step p-Tyk2/p-STAT3 process. Co-immunoprecipitation analyses, confocal microscopy, ligand pulldown and bioluminescence resonance energy transfer assays all indicated that the four receptors are physically interactive. Angiogenesis in murine day 5 retinas and in adult tissues was accelerated when C3ar1/C5ar1 signaling was potentiated, but repressed when it was disabled. Thus, C3ar1/C5ar1 and IL-6R-gp130 joint activation is needed to enable physiological VEGFR2 function.
Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Células Endoteliales/metabolismo , Interleucina-6/metabolismo , Ratones , Neovascularización Fisiológica , Transducción de Señal , Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
CREB-binding protein (CBP)/p300 interacting transactivator with glutamic acid (Glu) and aspartic acid (Asp)-tail 2 (Cited2) was recently shown to be essential for gluconeogenesis in the adult mouse. The metabolic function of Cited2 in mouse embryonic stem cells (mESCs) remains elusive. In the current study, the metabolism of glucose was investigated in mESCs, which contained a deletion in the gene for Cited2 (Cited2(Δ/-)). Compared with its parental wild type counterpart, Cited2(Δ/-) ESCs have enhanced glycolysis, alternations in mitochondria morphology, reduced glucose oxidation, and decreased ATP content. Cited2 is recruited to the hexokinase 1 (HK1) gene promoter to regulate transcription of HK1, which coordinates glucose metabolism in wild type ESCs. Reduced glucose oxidation and enhanced glycolytic activity in Cited2(Δ/-) ESCs correlates with defective differentiation during hypoxia, which is reflected in an increased expression of pluripotency marker (Oct4) and epiblast marker (Fgf5) and decreased expression of lineage specification markers (T, Gata-6, and Cdx2). Knockdown of hypoxia inducible factor-1α in Cited2(Δ/-) ESCs re-initiates the expression of differentiation markers T and Gata-6. Taken together, a deletion of Cited2 in mESCs results in abnormal mitochondrial morphology and impaired glucose metabolism, which correlates with a defective cell fate decision.
Asunto(s)
Células Madre Embrionarias/metabolismo , Glucólisis/fisiología , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética/fisiología , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/genética , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Hipoxia de la Célula/fisiología , Células Madre Embrionarias/citología , Glucosa/genética , Glucosa/metabolismo , Hexoquinasa/biosíntesis , Hexoquinasa/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oxidación-Reducción , Proteínas Represoras/genética , Transactivadores/genéticaRESUMEN
Regulation of endothelial cell biology by the Notch signaling pathway (Notch) is essential to vascular development, homeostasis, and sprouting angiogenesis. Although Notch determines cell fate and differentiation in a wide variety of cells, the molecular basis of upstream regulation of Notch remains poorly understood. Our group and others have implicated the Krüppel-like factor family of transcription factors as critical regulators of endothelial function. Here, we show that Krüppel-like factor 4 (KLF4) is a central regulator of sprouting angiogenesis via regulating Notch. Using a murine model in which KLF4 is overexpressed exclusively in the endothelium, we found that sustained expression of KLF4 promotes ineffective angiogenesis leading to diminished tumor growth independent of endothelial cell proliferation or cell cycling effects. These tumors feature increased vessel density yet are hypoperfused, leading to tumor hypoxia. Mechanistically, we show that KLF4 differentially regulates expression of Notch receptors, ligands, and target genes. We also demonstrate that KLF4 limits cleavage-mediated activation of Notch1. Finally, we rescue Notch target gene expression and the KLF4 sprouting angiogenesis phenotype by supplementation of DLL4 recombinant protein. Identification of this hitherto undiscovered role of KLF4 implicates this transcription factor as a critical regulator of Notch, tumor angiogenesis, and sprouting angiogenesis.
Asunto(s)
Endotelio Vascular/metabolismo , Factores de Transcripción de Tipo Kruppel/fisiología , Neovascularización Patológica , Receptores Notch/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN , Técnicas de Silenciamiento del Gen , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones TransgénicosRESUMEN
The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.
Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Cicatrización de Heridas/fisiología , Animales , Células de la Médula Ósea/citología , Modelos Animales de Enfermedad , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Piel/metabolismo , Piel/patología , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2(Δ/-), KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and ß-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression.
Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Actinas/biosíntesis , Actinas/genética , Animales , Cadherinas/biosíntesis , Cadherinas/genética , Células Cultivadas , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Miocitos Cardíacos/citología , Factores de Transcripción NFATC/biosíntesis , Factores de Transcripción NFATC/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Factores de Transcripción SOXB1/biosíntesis , Factores de Transcripción SOXB1/genética , Transactivadores/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genéticaRESUMEN
Hypoxia inducible factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O(2)) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic conditions by using a genetic model in which the required HIF-ß subunit (ARNT, Aryl hydrocarbon Receptor Nuclear Translocator) to HIF transcriptional responses was depleted. Endothelial cells (ECs) and aortic explants were isolated from Arnt ( loxP/loxP ) mice and infected with Adenovirus-Cre/GFP or control-GFP. We observed that moderate levels of 2.5 % O(2) promoted vessel sprouting, growth, and branching in control aortic ring assays while growth from Adenovirus-Cre infected explants was compromised. Primary Adenovirus-Cre infected EC cultures featured adverse migration and tube formation phenotypes. Primary pulmonary or cardiac ARNT-deleted ECs also failed to proliferate and survive in response to 8 or 2.5 % O(2) and hydrogen peroxide treatment. Our data demonstrates that ARNT promotes EC migration and vessel outgrowth and is indispensible for the proliferation and preservation of ECs in response to the physiological environmental cue of hypoxia. Thus, these results demonstrate that ARNT plays a critical intrinsic role in ECs and support an important collaboration between HIF-1 and HIF-2 transcriptional activity in these cells.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/antagonistas & inhibidores , Hipoxia de la Célula , Células Endoteliales/metabolismo , Animales , Aorta/crecimiento & desarrollo , Apoptosis , Secuencia de Bases , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Cartilla de ADN , Células Endoteliales/citología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Técnicas In Vitro , Ratones , Neovascularización Fisiológica , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Hypoxia inducible factors (HIFs) regulate adaptive responses to changes in oxygen (O(2)) tension during embryogenesis, tissue ischemia, and tumorigenesis. Because HIF-deficient embryos exhibit a number of developmental defects, the precise role of HIF in early vascular morphogenesis has been uncertain. Using para-aortic splanchnopleural (P-Sp) explant cultures, we show that deletion of the HIF-beta subunit (ARNT) results in defective hematopoiesis and the inhibition of both vasculogenesis and angiogenesis. These defects are rescued upon the addition of wild-type Sca-1(+) hematopoietic cells or recombinant VEGF. Arnt(-/-) embryos exhibit reduced levels of VEGF protein and increased numbers of apoptotic hematopoietic cells. These results suggest that HIF coordinates early endothelial cell emergence and vessel development by promoting hematopoietic cell survival and paracrine growth factor production.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Vasos Sanguíneos/embriología , Factores de Crecimiento de Célula Hematopoyética/fisiología , Animales , Apoptosis , Translocador Nuclear del Receptor de Aril Hidrocarburo/deficiencia , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Secuencia de Bases , Células de la Médula Ósea/fisiología , Técnicas de Cocultivo , ADN/genética , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/fisiología , Femenino , Hematopoyesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Embarazo , Proteínas Recombinantes/farmacología , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
Adaptive responses to low oxygen (O(2)) tension (hypoxia) are mediated by the heterodimeric transcription factor hypoxia inducible factor (HIF). When stabilized by hypoxia, bHLH-PAS alpha- and beta- (HIF-1beta or ARNT) HIF complex regulate the expression of multiple genes, including vascular endothelial growth factor (VEGF). To investigate the mechanism(s) through which hypoxia contributes to blood vessel development, we used embryonic stem cell (ESC) differentiation cultures that develop into embryoid bodies (EBs) mimicking early embryonic development. Significantly, low O(2) levels promote vascular development and maturation in wild-type (WT) ESC cultures measured by an increase in the numbers of CD31(+) endothelial cells (ECs) and sprouting angiogenic EBs, but refractory in Arnt(-/-) and Vegf(-/-) ESC cultures. Thus, we propose that hypoxia promotes the production of ECs and contributes to the development and maturation of vessels. Our findings further demonstrate that hypoxia alters the temporal expression of VEGF receptors Flk-1 (VEGFR-2) and the membrane and soluble forms of the antagonistic receptor Flt-1 (VEGFR-1). Moreover, these receptors are distinctly expressed in differentiating Arnt(-/-) and Vegf(-/-) EBs. These results support existing models in which VEGF signaling is tightly regulated during specific biologic events, but also provide important novel evidence that, in response to physiologic hypoxia, HIF mediates a distinct stoichiometric pattern of VEGF receptors throughout EB differentiation analogous to the formation of vascular networks during embryogenesis.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Neovascularización Fisiológica , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/deficiencia , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
BACKGROUND: Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS: We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1ß), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS: Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Regulación de la Expresión Génica , Isquemia/genética , Extremidad Inferior/irrigación sanguínea , Músculo Liso Vascular/metabolismo , Enfermedades Vasculares Periféricas/genética , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/biosíntesis , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Inmunohistoquímica , Isquemia/metabolismo , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Músculo Liso Vascular/patología , Enfermedades Vasculares Periféricas/metabolismo , Enfermedades Vasculares Periféricas/patología , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Macrophages are strategically distributed in mammalian tissues and play an essential role in priming the immune response. However, macrophages need to constantly strike a balance between activation and inhibition states to avoid a futile inflammatory reaction. Here, we identify the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as a potent repressor of macrophage proinflammatory activation. Gain- and loss-of-function studies revealed that CITED2 is required for optimal peroxisome proliferator-activated receptor gamma (PPARγ) activation and attendant select anti-inflammatory gene expression in macrophages. More importantly, deficiency of CITED2 resulted in significant attenuation of rosiglitazone-induced PPARγ activity, PPARγ recruitment to target gene promoters, and anti-inflammatory target gene expression in macrophages. Interestingly, deficiency of Cited2 strikingly heightened proinflammatory gene expression through stabilization of hypoxia-inducible factor 1 alpha (HIF1α) protein in macrophages. Further, overexpression of Egln3 or inhibition of HIF1α in Cited2-deficient macrophages completely reversed elevated proinflammatory cytokine/chemokine gene expression. Importantly, mice bearing a myeloid cell-specific deletion of Cited2 were highly susceptible to endotoxin-induced sepsis symptomatology and mortality. Collectively, our observations identify CITED2 as a novel negative regulator of macrophage proinflammatory activation that protects the host from inflammatory insults.
Asunto(s)
Activación de Macrófagos/fisiología , Macrófagos/inmunología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , PPAR gamma/metabolismo , Células RAW 264.7RESUMEN
Mature macrophages, neutrophils and lymphoid cells do not develop in PU.1(-/-) mice. In contrast, mice lacking the highly related protein Spi-B generate all hematopoietic lineages but display a B-cell receptor signaling defect. These distinct phenotypes could result from functional differences between PU.1 and Spi-B or their unique temporal and tissue-specific expression (PU.1: myeloid and B cells; Spi-B: B cells only). To address this question, we introduced the Spi-B cDNA into the murine PU.1 locus by homologous recombination. In the absence of PU.1, Spi-B rescued macrophage and granulocyte development when assayed by in vitro differentiation of embryonic stem cells. Adherent, CD11b(+)/F4/80(+) cells capable of phagocytosis were detected in PU.1(Spi-B/Spi-B) embryoid bodies, and myeloid colonies were present in hematopoietic progenitor assays. Despite its ability to rescue myeloid differentiation, Spi-B did not rescue lymphoid development in a RAG-2(-/-) complementation assay. These results demonstrate an important difference between PU.1 and Spi-B. Careful comparison of these Ets factors will delineate important functional domains of PU.1 involved in lymphocyte lineage commitment and/or maturation.
Asunto(s)
Linaje de la Célula/fisiología , Proteínas de Unión al ADN/fisiología , Linfocitos/fisiología , Células Mieloides/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Linaje de la Célula/genética , Células Cultivadas , Marcación de Gen , Macrófagos/fisiología , Ratones , Proteínas Proto-Oncogénicas c-ets , Células Madre/fisiologíaRESUMEN
Hypoxia Inducible Factor (HIF), consisting of HIF1alpha and ARNT (HIF1beta) subunits, activates multiple genes in response to oxygen (O(2)) deprivation. Arnt(-/-) mice exhibit substantial defects in blood cell and vessel development. We demonstrate that hypoxia accelerates the expression of Brachyury (a mesoderm-specific transcription factor), BMP4 (a mesoderm-promoting growth factor) and FLK1 (a marker of hemangioblasts, the bipotential progenitor of endothelial and hematopoietic cells) in differentiating ES cell cultures. Significantly, proliferation of embryonic hemangioblasts (BL-CFCs) is regulated by hypoxia, as Arnt(+/+) ES cells generate increased numbers of FLK1(+) cells, and BL-CFCs with accelerated kinetics in response to low O(2). This response is HIF-dependent as Arnt(-/-) ES cells produce fewer FLK1(+) cells and BL-CFCs, under both normoxic and hypoxic conditions. Interestingly, this defect is rescued when Arnt(-/-) ES cells are co-cultured with Arnt(+/+) ES cells. Vegf(+/-)or Vegf(-/-) ES cells generate proper numbers of FLK1(+) cells but fewer BL-CFCs, suggesting that additional factors regulated by HIF (other than VEGF) are involved in these early events. Thus, hypoxic responses are important for the establishment of various progenitor cells, including early mesoderm and its differentiation into hemangioblasts. Together these data suggest that ineffective responses to hypoxia in Arnt(-/-) embryos abrogate proper cardiovascular development during early embryogenesis, including the pathways controlling hemangioblast differentiation.