Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402224

RESUMEN

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos , Indoles , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animales , Ratones , Antígeno B7-H1 , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia , Modelos Animales de Enfermedad , Proteínas de la Ataxia Telangiectasia Mutada
2.
Cancer Immunol Res ; 10(5): 571-580, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35290437

RESUMEN

The immunosuppressive tumor microenvironment (TME) does not allow generation and expansion of antitumor effector cells. One of the potent immunosuppressive factors present in the TME is the indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, produced mainly by cancer cells and suppressive immune cells of myeloid origin. In fact, IDO+ myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) tend to be more suppressive than their IDO- counterparts. Hence, therapeutic approaches that would target the IDO+ cells in the TME, while sparing the antigen-presenting functions of IDO- myeloid populations, are needed. Using an IDO-specific peptide vaccine (IDO vaccine), we explored the possibility of generating effector cells against IDO and non-IDO tumor-derived antigens. For this, IDO-secreting (B16F10 melanoma) and non-IDO-secreting (TC-1) mouse tumor models were employed. We showed that the IDO vaccine significantly reduced tumor growth and enhanced survival of mice in both the tumor models, which associated with a robust induction of IDO-specific effector cells in the TME. The IDO vaccine significantly enhanced the antitumor efficacy of non-IDO tumor antigen-specific vaccines, leading to an increase in the number of total and antigen-specific activated CD8+ T cells (IFNγ+ and granzyme B+). Treatment with the IDO vaccine significantly reduced the numbers of IDO+ MDSCs and DCs, and immunosuppressive regulatory T cells in both tumor models, resulting in enhanced therapeutic ratios. Together, we showed that vaccination against IDO is a promising therapeutic option for both IDO-producing and non-IDO-producing tumors. The IDO vaccine selectively ablates the IDO+ compartment in the TME, leading to a significant enhancement of the immune responses against other tumor antigen-specific vaccines.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Animales , Antígenos de Neoplasias , Indolamina-Pirrol 2,3,-Dioxigenasa , Melanoma/tratamiento farmacológico , Ratones , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA