Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Evol Biol ; 37(4): 471-485, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38350467

RESUMEN

Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]). These results present a more pessimistic outlook on the consequences of climate change. However, unlike CTLs, TFL data are limited to Drosophila, and variability in TSF methods poses challenges in predicting species responses to increasing temperature. To address these data and methodological gaps, we propose 3 standardized approaches for assessing thermal impacts on fertility. We focus on adult obligate sexual terrestrial invertebrates but also provide modifications for other animal groups and life-history stages. We first outline a "gold-standard" protocol for determining TFLs, focussing on the effects of short-term heat shocks and simulating more frequent extreme heat events predicted by climate models. As this approach may be difficult to apply to some organisms, we then provide a standardized TSF protocol. Finally, we provide a framework to quantify fertility loss in response to extreme heat events in nature, given the limitations in laboratory approaches. Applying these standardized approaches across many taxa, similar to CTLs, will allow robust tests of the impact of fertility loss on species responses to increasing temperatures.


Asunto(s)
Cambio Climático , Invertebrados , Animales , Temperatura , Fertilidad , Drosophila
2.
Ecol Lett ; 23(11): 1573-1588, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32906225

RESUMEN

Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.


Asunto(s)
Envejecimiento , Espermatozoides , Animales , Evolución Biológica , Costos y Análisis de Costo , Femenino , Masculino , Reproducción , Conducta Sexual Animal
3.
J Evol Biol ; 33(2): 225-236, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31702092

RESUMEN

Sperm competition commonly occurs whenever females mate multiply, leading to variation in male paternity success. This can be due to variation in the various traits that might affect sperm competitive ability, which itself depends on both genetic and environmental factors, as well as on genotype-by-environment interactions (GEI). Seminal fluid is a major component of the male ejaculate that is often expected to mediate sperm competition, where different genotypes can differ in their seminal fluid expression as a response to different levels of sperm competition (i.e. exhibit GEI). We therefore here focussed on testing for GEI in expression of two recently identified seminal fluid transcripts, suckless-1 and suckless-2, which potentially modulate sperm competitive ability in the simultaneously hermaphroditic flatworm Macrostomum lignano via their effects on manipulating post-mating partner behaviour and ultimately the fate of transferred ejaculates. In addition, we sought to test for GEI in sperm competitive ability in a standardized sperm competition (P1 and P2 ) assay, to investigate the relationship between natural variation in the expression of these seminal fluid transcripts generated through GEI and relative paternity success. We found GEI for the expression level of suckless-1 and suckless-2, as well as for sperm competitive ability. Moreover, we found a positive relation between the expression of suckless-1 and relative paternity success (P1 ). This suggests that natural variation in the expression of this seminal fluid transcript indeed can influence sperm competition outcomes in M. lignano.


Asunto(s)
Interacción Gen-Ambiente , Platelmintos/genética , Semen/metabolismo , Espermatozoides/fisiología , Animales , Regulación de la Expresión Génica , Organismos Hermafroditas/genética , Masculino , Semen/química
4.
J Evol Biol ; 33(5): 714-726, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32064699

RESUMEN

The seminal fluid proteins (SFPs) transferred to mating partners along with sperm often play crucial roles in mediating post-mating sexual selection. One way in which sperm donors can maximize their own reproductive success is by modifying the partner's (sperm recipient's) post-copulatory behaviour to prevent or delay re-mating, thereby decreasing the likelihood or intensity of sperm competition. Here, we adopted a quantitative genetic approach combining gene expression and behavioural data to identify candidates that could mediate such a response in the simultaneously hermaphroditic flatworm Macrostomum lignano. We identified two putative SFPs-Mlig-pro46 and Mlig-pro63-linked to both mating frequency and 'suck' frequency, a distinctive behaviour, in which, upon ejaculate receipt, the worm places its pharynx over its female genital opening and apparently attempts to remove the received ejaculate. We, therefore, performed a manipulative experiment using RNA interference-induced knockdown to ask how the loss of Mlig-pro46 and Mlig-pro63 expression, singly and in combination, affects mating frequency, partner suck propensity and sperm competitive ability. None of the knockdown treatments impacted strongly on the mating frequency or sperm competitive ability, but knockdown of Mlig-pro63 resulted in a significantly decreased suck propensity of mating partners. This suggests that Mlig-pro63 may normally act as a cue in the ejaculate to trigger recipient suck behaviour and-given that other proteins in the ejaculate have the opposite effect-could be one component of an ongoing arms race between donors and recipients over the control of ejaculate fate. However, the adaptive significance of Mlig-pro46 and Mlig-pro63 from a donor perspective remains enigmatic.


Asunto(s)
Organismos Hermafroditas/fisiología , Proteínas de Plasma Seminal/fisiología , Conducta Sexual Animal , Turbelarios/fisiología , Animales , Femenino , Aptitud Genética , Masculino
5.
J Evol Biol ; 33(10): 1440-1451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32697880

RESUMEN

Seminal fluid proteins (SFPs) can trigger drastic changes in mating partners, mediating post-mating sexual selection and associated sexual conflict. Also, cross-species comparisons have demonstrated that SFPs evolve rapidly and hint that post-mating sexual selection drives their rapid evolution. In principle, this pattern should be detectable within species as rapid among-population divergence in SFP expression and function. However, given the multiple other factors that could vary among populations, isolating divergence in SFP-mediated effects is not straightforward. Here, we attempted to address this gap by combining the power of a common garden design with functional assays involving artificial injection of SFPs in the simultaneously hermaphroditic freshwater snail, Lymnaea stagnalis. We detected among-population divergence in SFP gene expression, suggesting that seminal fluid composition differs among four populations collected in Western Europe. Furthermore, by artificially injecting seminal fluid extracted from these field-derived snails into standardized mating partners, we also detected among-population divergence in the strength of post-mating effects induced by seminal fluid. Both egg production and subsequent sperm transfer of partners differed depending on the population origin of seminal fluid, with the response in egg production seemingly closely corresponding to among-population divergence in SFP gene expression. Our results thus lend strong intraspecific support to the notion that SFP expression and function evolve rapidly, and confirm L. stagnalis as an amenable system for studying processes driving SFP evolution.


Asunto(s)
Lymnaea/metabolismo , Aislamiento Reproductivo , Semen/metabolismo , Animales , Femenino , Expresión Génica , Lymnaea/genética , Masculino
6.
Naturwissenschaften ; 107(6): 52, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33241454

RESUMEN

Sperm removal behaviour (SRB) is known in many animals, and male genital structures are often involved in the SRB, e.g. rubbing female genitalia vigorously. However, it remains unclear how those male genital structures function properly without severe genital damage during SRB. In the present study, we focused on the bushcricket Metaplastes ornatus and examined the biomechanics of male and female genital structures, involved in their SRB as a model case. During an initial phase of mating, males of this species thrust their subgenital plate with hook-like spurs and many microscopic spines into the female genital chamber. By moving the subgenital plate back-and-forth, males stimulate females, and this stimulation induces the ejection of sperm previously stored in females. We aimed to uncover the mechanics of the interaction between the subgenital plate and genital chamber during SRB. The genital morphology and its material composition were investigated using modern imaging and microscopy techniques. The obtained results showed a pronounced material heterogeneity in the subgenital plate and the genital chamber. The material heterogeneity was completely absent in that of a second bushcricket species, Poecilimon veluchianus, which does not exhibit SRB. Finite element simulations showed that the specific material heterogeneity can redistribute the stress in the subgenital plate of M. ornatus and, thereby, reduces stress concentration during SRB. This may explain why only a few examined males had a broken spur. We suggest that the observed structural features and material heterogeneity in M. ornatus are adaptations to their SRB.


Asunto(s)
Genitales Masculinos/anatomía & histología , Ortópteros/anatomía & histología , Ortópteros/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Genitales Femeninos/anatomía & histología , Masculino
7.
BMC Evol Biol ; 19(1): 185, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604422

RESUMEN

BACKGROUND: Studying reproductive trait allometries can help to understand optimal male investment strategies under sexual selection. In promiscuous mating systems, studies across several taxa suggest that testes allometry is usually positive, presumably due to strong selection on sperm numbers through intense sperm competition. Here, we investigated testes allometry in a bush-cricket species, Metaplastes ornatus, in which females mate promiscuously, but where sperm removal behaviour by males likely drastically reduces realised sperm competition level. RESULTS: As hypothesised, we found evidence for negative testes allometry and hence a fundamentally different male investment strategy compared to species under intense sperm competition. In addition, the mean relative testes size of M. ornatus was small compared to other species of bush-crickets. Surprisingly, the spermatophore gland, a potential alternative trait that males could invest in instead of testes, also did not show positive allometry, but was approximately isometric. We further observed the expected pattern of negative allometry for the male morphological structure responsible for sperm removal in this species, the subgenital plate, supporting the one-size-fits-all hypothesis for intromittent genitalia. CONCLUSION: Our findings suggest that the evolution of sperm removal behaviour in M. ornatus was a key adaptation for avoiding sperm competition, with important consequences for reproductive trait allometries. Nevertheless, they also imply that it does not pay for larger males to invest disproportionately in nuptial gift production in this species.


Asunto(s)
Gryllidae/anatomía & histología , Gryllidae/fisiología , Carácter Cuantitativo Heredable , Espermatozoides/fisiología , Animales , Femenino , Masculino , Tamaño de los Órganos , Fenotipo , Análisis de Regresión , Reproducción , Testículo/anatomía & histología
8.
Mol Ecol ; 28(9): 2321-2341, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30891857

RESUMEN

Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.


Asunto(s)
Regulación de la Expresión Génica , Organismos Hermafroditas/genética , Platelmintos/fisiología , Animales , Femenino , Organismos Hermafroditas/fisiología , Masculino , Oogénesis/genética , Ovario/fisiología , Platelmintos/genética , Interferencia de ARN , Análisis de Secuencia de ARN , Razón de Masculinidad , Espermatogénesis/genética , Testículo/fisiología , Transcriptoma
9.
Heredity (Edinb) ; 122(5): 595-611, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30356222

RESUMEN

Seminal fluid proteins (SFPs) are crucial mediators of sexual selection and sexual conflict. Recent studies have chiefly focused on environmentally induced plasticity as one source of variation in SFP expression, particularly in response to differing sperm competition levels. However, understanding the evolution of a trait in heterogenous environments requires estimates of both environmental and genetic sources of variation, as well as their interaction. Therefore, we investigated how environment (specifically mating group size, a good predictor of sperm competition intensity), genotype and genotype-by-environment interactions affect seminal fluid expression. To do so, we reared 12 inbred lines of a simultaneously hermaphroditic flatworm Macrostomum lignano in groups of either two or eight worms and measured the expression levels of 58 putative SFP transcripts. We then examined the source of variation in the expression of each transcript individually and for multivariate axes extracted from a principal component analysis. We found that mating group size did not affect expression levels according to the single transcript analyses, nor did it affect the first principal component (presumably representing overall investment in seminal fluid production). However, mating group size did affect the relative expression of different transcripts captured by the second principal component (presumably reflecting variation in seminal fluid composition). Most transcripts were genetically variable in their expression level and several exhibited genotype-by-environment interactions; relative composition also showed high genetic variation. Collectively, our results reveal the tightly integrated nature of the seminal fluid transcriptome and provide new insights into the quantitative genetic basis of seminal fluid investment and composition.


Asunto(s)
Regulación de la Expresión Génica , Interacción Gen-Ambiente , Proteínas de Plasma Seminal/genética , Animales , Femenino , Perfilación de la Expresión Génica , Variación Genética , Genotipo , Proteínas del Helminto/genética , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiología , Masculino , Preferencia en el Apareamiento Animal , Fenotipo , Platelmintos/genética , Platelmintos/fisiología
10.
BMC Evol Biol ; 18(1): 81, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848299

RESUMEN

BACKGROUND: Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner's behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. RESULTS: Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. CONCLUSIONS: Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.


Asunto(s)
Organismos Hermafroditas/metabolismo , Hibridación in Situ/métodos , Platelmintos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Ontología de Genes , Organismos Hermafroditas/genética , Proteínas de Insectos/genética , Masculino , Especificidad de Órganos , Fenotipo , Platelmintos/genética , Próstata/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción , Espermatozoides/metabolismo
11.
Biol Lett ; 14(10)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305462

RESUMEN

Self-fertilization is widespread among simultaneously hermaphroditic animals and plants, but is often only facultatively deployed under circumstances that constrain outcrossing. A central prediction of sex allocation (SA) theory is that because exclusive selfing reduces sperm or pollen competition to zero, this should favour extreme economy in resources channelled to the male sex function. We can therefore expect that organisms switching from outcrossing to selfing should reduce their male allocation. However, to date this prediction has received relatively little support in animal taxa, especially compared to plants. Here we show that isolated individuals (under enforced selfing conditions) have a less male-biased SA than do grouped conspecifics (under outcrossing conditions) in the preferentially outcrossing flatworm Macrostomum hystrix This shift arises from a reduced male allocation (testis area) in isolated individuals, although we did not find any evidence for a re-allocation of these resources to the female sex function (i.e. ovary area was unaffected by selfing/outcrossing conditions). Our results provide some of the clearest experimental evidence to date for reduced male allocation under selfing in simultaneously hermaphroditic animals, extending previous findings comparing SA between populations differing in selfing rates to the level of individual plasticity in gametogenesis.


Asunto(s)
Organismos Hermafroditas/fisiología , Platelmintos/fisiología , Autofecundación/fisiología , Animales , Femenino , Masculino , Ovario , Testículo
12.
Mol Ecol ; 26(20): 5359-5361, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29080372

RESUMEN

Sex is good for us, but it is a compromise. For the benefit of being able to produce genetically variable offspring, we must pay the cost of passing on only half our genes to each of them. Whilst evolutionary biologists still puzzle over the precise details of why the benefits of sex so frequently seem to outweigh the costs (Neiman, Lively, & Meirmans, ), one major challenge to sexual reproduction is the fact that if we pass on only half our genetic material to each gamete, there is a strong incentive for each individual allele to try to gain an unfair representation during gamete production. Fundamental to stabilizing sex once it evolves is therefore the ability to ensure a fair meiosis. Nevertheless, this system is not perfect, and some selfish genetic elements - so-called meiotic drivers - manage to tip the meiotic scales in their favour and gain a transmission advantage (review in Burt and Trivers, ). In this issue of Molecular Ecology, Manser, Lindholm, Simmons, and Firman () demonstrate that in house mice, the effectiveness of one such harmful transmission distorter is reduced by polyandry and hence that population viability can be somewhat restored by female promiscuity.


Asunto(s)
Tecnología de Genética Dirigida , Animales , Evolución Biológica , Femenino , Masculino , Ratones , Reproducción , Conducta Sexual Animal , Espermatozoides
13.
Mol Reprod Dev ; 84(2): 120-131, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27292123

RESUMEN

Flatworms exhibit huge diversity in their reproductive biology, making this group an excellent model system for exploring how differences among species in reproductive ecology are reflected in the physiological and molecular details of how reproduction is achieved. In this review, I consider five key "lifestyle choices" (i.e., alternative evolutionary/developmental outcomes) that collectively encompass much of flatworm sexual diversity, beginning with the decisions: (i) whether to be free-living or parasitic; (ii) whether to reproduce asexually or sexually; and (iii) whether to be gonochoristic (separate-sexed) or hermaphroditic. I then examine two further decisions involving hermaphroditism: (iv) outcrossing versus selfing and (v) the balance of investment into the male versus the female sex function (sex allocation). Collectively, these lifestyle choices set the basic rules for how reproduction occurs, but as I emphasize in the second part of the review, the reproductive biology of flatworms is also greatly impacted by the near-pervasive and powerful pressure of sexual selection, together with the related phenomena of sperm competition and sexual conflict. Exactly how this plays out, however, is strongly affected by the particular combination of reproductive strategies adopted by each species. Mol. Reprod. Dev. 84: 120-131, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Evolución Biológica , Platelmintos/fisiología , Caracteres Sexuales , Animales , Femenino , Masculino , Reproducción/fisiología
14.
J Exp Biol ; 220(Pt 9): 1568-1577, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183866

RESUMEN

The free-living flatworm genus Macrostomum is an emerging model system for studying the links between sex allocation, sexual selection and mating system evolution, as well as the underlying developmental and physiological mechanisms responsible for wide intra- and inter-specific variability in reproductive phenotypes. Despite compelling comparative morphological evidence of sexual diversity, detailed experimental work on reproductive behaviour and physiology in Macrostomum has so far been largely limited to just two species, M. lignano and M. hystrix, an obligate and a preferential outcrosser, respectively. In this study, we establish that a third species, M. pusillum, exhibits a combination of reproductive traits strikingly different from both of its congeners. Unlike M. lignano, we demonstrate that M. pusillum does not adjust sex allocation or the speed of spermatogenesis to the prevailing social group size. Macrostomumpusillum's relatively simple sperm morphology likely explains the short spermatogenesis duration we report, and is linked to a hypodermically inseminating mode of fertilization, which we show also means that these worms are capable of self-fertilization. Surprisingly, and unlike M. hystrix, selfing in isolated worms commences after only a short (if any) delay compared with the onset of reproduction in grouped individuals, with little evidence of differential inbreeding depression in 'isolated' progeny. These combined results suggest that, in nature, M. pusillum may be regularly selfing, in contrast to the congeners studied to date. Our findings highlight the rapid and correlated evolution of reproductive traits, and reinforce the utility of the genus Macrostomum for understanding the evolutionary and developmental mechanisms responsible for this diversity.


Asunto(s)
Platelmintos/fisiología , Animales , Evolución Biológica , Organismos Hermafroditas , Autofecundación , Espermatogénesis
15.
BMC Evol Biol ; 16: 60, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26956948

RESUMEN

BACKGROUND: Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. RESULTS: Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. CONCLUSIONS: Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition.


Asunto(s)
Platelmintos/fisiología , Espermatozoides/fisiología , Animales , Trastornos del Desarrollo Sexual , Femenino , Fertilización , Masculino , Ovario/fisiología , Espermatogénesis , Testículo/fisiología
16.
BMC Biol ; 13: 87, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26507392

RESUMEN

BACKGROUND: Ejaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment. RESULTS: Our quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid--i.e. seminal fluid proteome composition--differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition--SVS 6, SVS 5 and CEACAM 10--were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities. CONCLUSIONS: Our study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition.


Asunto(s)
Ratones/fisiología , Proteoma , Semen/fisiología , Conducta Sexual Animal , Medio Social , Espermatozoides/fisiología , Animales , Conducta Competitiva , Masculino
17.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26136446

RESUMEN

Self-fertilization occurs in a broad range of hermaphroditic plants and animals, and is often thought to evolve as a reproductive assurance strategy under ecological conditions that disfavour or prevent outcrossing. Nevertheless,selfing ability is far from ubiquitous among hermaphrodites, and may be constrained in taxa where the male and female gametes of the same individual cannot easily meet. Here, we report an extraordinary selfing mechanism in one such species, the free-living flatworm Macrostomum hystrix. To test the hypothesis that adaptations to hypodermic insemination of the mating partner under outcrossing also facilitate selfing, we experimentally manipulated the social environment of these transparent flatworms and then observed the spatial distribution of received sperm in vivo. We find that this distribution differs radically between conditions allowing or preventing outcrossing, implying that isolated individuals use their needle-like stylet (male copulatory organ) to inject own sperm into their anterior body region, including into their own head, from where they then apparently migrate to the site of (self-)fertilization. Conferring the ability to self could thus be an additional consequence of hypodermic insemination, a widespread fertilization mode that is especially prevalent among simultaneously hermaphroditic animals and probably evolves due to sexual conflict over the transfer and subsequent fate of sperm.


Asunto(s)
Trastornos del Desarrollo Sexual , Autofecundación , Turbelarios/fisiología , Animales , Inseminación
18.
Mol Hum Reprod ; 20(12): 1169-79, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25323971

RESUMEN

Spermatogenesis is a long and complex process that, despite the shared overall goal of producing the male gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens. We begin by reviewing the basic biology of spermatogenesis in some of the main animal model systems to illustrate this diversity, and then ask to what extent this variation arises from the evolutionary forces acting on spermatogenesis, most notably sperm competition. We explore five specific aspects of spermatogenesis from an evolutionary perspective, namely: (i) interspecific diversity in the number and morphology of sperm produced; (ii) the testicular organizations and stem cell systems used to produce them; (iii) the large number and high evolutionary rate of genes underpinning spermatogenesis; (iv) the repression of transcription during spermiogenesis and its link to the potential for haploid selection; and (v) the phenomenon of selection acting at the level of the germline. Overall we conclude that adopting an evolutionary perspective can shed light on many otherwise opaque features of spermatogenesis, and help to explain the diversity of ways in which males of different species perform this fundamentally important process.


Asunto(s)
Evolución Biológica , Reproducción , Conducta Sexual Animal , Interacciones Espermatozoide-Óvulo , Espermatogénesis , Espermatozoides/fisiología , Testículo/fisiología , Animales , Forma de la Célula , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Selección Genética , Especificidad de la Especie , Recuento de Espermatozoides , Transcripción Genética
19.
Mol Cell Proteomics ; 11(6): M111.014993, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22331477

RESUMEN

Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.


Asunto(s)
Proteoma/metabolismo , Proteínas de Secreción de la Vesícula Seminal/metabolismo , Espermatozoides/metabolismo , Valina/metabolismo , Animales , Animales no Consanguíneos , Marcaje Isotópico , Cinética , Masculino , Ratones , Proteómica , Vesículas Seminales/metabolismo
20.
BMC Biol ; 11: 66, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23800051

RESUMEN

BACKGROUND: Diversity in penile morphology is characterised by extraordinary variation in the size and shape of the baculum (penis bone) found in many mammals. Although functionally enigmatic, diversity in baculum form is hypothesised to result from sexual selection. According to this hypothesis, the baculum should influence the outcome of reproductive competition among males within promiscuous mating systems. However, a test of this key prediction is currently lacking. RESULTS: Here we show that baculum size explains significant variation in the reproductive success of male house mice under competitive conditions. After controlling for body size and other reproductive traits, the width (but not length) of the house mouse baculum predicts both the mean number of offspring sired per litter and total number of offspring sired. CONCLUSIONS: By providing the first evidence linking baculum morphology to male reproductive success, our results support the hypothesis that evolutionary diversity in baculum form is driven by sexual selection.


Asunto(s)
Preferencia en el Apareamiento Animal/fisiología , Pene/anatomía & histología , Reproducción/fisiología , Animales , Femenino , Masculino , Ratones , Tamaño de los Órganos , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA