Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes Dev ; 34(15-16): 1089-1105, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32616519

RESUMEN

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic ß cells that are perturbed in Clock-/- and Bmal1-/- ß-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant ß cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in ß-cell function across the sleep/wake cycle.


Asunto(s)
Empalme Alternativo , Relojes Circadianos/genética , Exocitosis , Glucosa/metabolismo , Secreción de Insulina/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Células Cultivadas , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Homeostasis , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/fisiología , Obesidad/genética , Obesidad/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Factores de Transcripción/fisiología
2.
Genes Dev ; 32(5-6): 321-323, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29593064

RESUMEN

Each spring, we get out of bed 1 h ahead of our biological wake-up time due to the misalignment of internal clocks with the light-dark cycle. Genetic discoveries revealed that clock genes encode transcription factors that are expressed throughout many tissues, yet a gap has remained in understanding the temporal dynamics of transcription. Two groups now apply circular chromosome conformation capture and high-throughput sequencing to dissect how "time of day"-dependent changes in chromatin drive core clock oscillations. A surprise is the finding that disruption of enhancer-promoter contacts within chromatin leads to an advance in the "wake-up" time of mice. Furthermore, the assembly of transcriptionally active domains of chromatin requires the ordered recruitment of core clock transcription factors each day. These studies show that waking up involves highly dynamic changes in the three-dimensional positioning of genes within the cell.


Asunto(s)
Ritmo Circadiano/genética , Elementos de Facilitación Genéticos/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Fotoperiodo , Regiones Promotoras Genéticas/genética
3.
Genes Dev ; 32(21-22): 1367-1379, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366905

RESUMEN

The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.


Asunto(s)
Ritmo Circadiano/genética , FN-kappa B/fisiología , Factores de Transcripción ARNTL/metabolismo , Animales , Conducta Animal , Proteínas CLOCK/metabolismo , Línea Celular , Cromatina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética
5.
Nature ; 466(7306): 627-31, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20562852

RESUMEN

The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective beta-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the beta-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , Diabetes Mellitus/metabolismo , Insulina/sangre , Islotes Pancreáticos/metabolismo , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Glucemia/análisis , Glucemia/metabolismo , Proteínas CLOCK/deficiencia , Proteínas CLOCK/metabolismo , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular , Ritmo Circadiano/genética , Diabetes Mellitus/genética , Perfilación de la Expresión Génica , Intolerancia a la Glucosa/genética , Prueba de Tolerancia a la Glucosa , Técnicas In Vitro , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/patología , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenotipo , Sueño/genética , Sueño/fisiología , Vesículas Sinápticas/metabolismo , Vigilia/genética , Vigilia/fisiología
6.
Cell Metab ; 36(1): 90-102.e7, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171340

RESUMEN

Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified ß cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). ß cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in ß cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1ß receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single ß cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.


Asunto(s)
Células Secretoras de Insulina , FN-kappa B , Animales , Humanos , Ratones , Cromatina/metabolismo , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo
7.
Cell Metab ; 6(5): 414-21, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17983587

RESUMEN

The circadian clock programs daily rhythms and coordinates multiple behavioral and physiological processes, including activity, sleep, feeding, and fuel homeostasis. Recent studies indicate that genetic alteration in the core molecular clock machinery can have pronounced effects on both peripheral and central metabolic regulatory signals. Many metabolic systems also cycle and may in turn affect function of clock genes and circadian systems. However, little is known about how alterations in energy balance affect the clock. Here we show that a high-fat diet in mice leads to changes in the period of the locomotor activity rhythm and alterations in the expression and cycling of canonical circadian clock genes, nuclear receptors that regulate clock transcription factors, and clock-controlled genes involved in fuel utilization in the hypothalamus, liver, and adipose tissue. These results indicate that consumption of a high-calorie diet alters the function of the mammalian circadian clock.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Grasas de la Dieta/farmacología , Animales , Proteínas CLOCK , Sistema Nervioso Central/efectos de los fármacos , Grasas de la Dieta/administración & dosificación , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Transactivadores/genética , Transactivadores/fisiología
8.
Circ Res ; 106(3): 447-62, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20167942

RESUMEN

The incidence of the metabolic syndrome represents a spectrum of disorders that continue to increase across the industrialized world. Both genetic and environmental factors contribute to metabolic syndrome and recent evidence has emerged to suggest that alterations in circadian systems and sleep participate in the pathogenesis of the disease. In this review, we highlight studies at the intersection of clinical medicine and experimental genetics that pinpoint how perturbations of the internal clock system, and sleep, constitute risk factors for disorders including obesity, diabetes mellitus, cardiovascular disease, thrombosis and even inflammation. An exciting aspect of the field has been the integration of behavioral and physiological approaches, and the emerging insight into both neural and peripheral tissues in disease pathogenesis. Consideration of the cell and molecular links between disorders of circadian rhythms and sleep with metabolic syndrome has begun to open new opportunities for mechanism-based therapeutics.


Asunto(s)
Ritmo Circadiano/fisiología , Síndrome Metabólico/fisiopatología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/fisiología , Tejido Adiposo/metabolismo , Adulto , Animales , Proteínas CLOCK/deficiencia , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/fisiopatología , Ritmo Circadiano/genética , Ritmo Circadiano/inmunología , Ritmo Circadiano/efectos de la radiación , Citocinas/fisiología , Disomnias/fisiopatología , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Hormonas/metabolismo , Humanos , Incidencia , Inflamación/fisiopatología , Iluminación/efectos adversos , Hígado/metabolismo , Síndrome Metabólico/epidemiología , Síndrome Metabólico/etiología , Síndrome Metabólico/genética , Ratones , Ratones Noqueados , Persona de Mediana Edad , Nicotinamida Fosforribosiltransferasa/fisiología , Sirtuina 1/fisiología , Privación de Sueño/fisiopatología
9.
Elife ; 112022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188462

RESUMEN

The mammalian circadian clock drives daily oscillations in physiology and behavior through an autoregulatory transcription feedback loop present in central and peripheral cells. Ablation of the core clock within the endocrine pancreas of adult animals impairs the transcription and splicing of genes involved in hormone exocytosis and causes hypoinsulinemic diabetes. Here, we developed a genetically sensitized small-molecule screen to identify druggable proteins and mechanistic pathways involved in circadian ß-cell failure. Our approach was to generate ß-cells expressing a nanoluciferase reporter within the proinsulin polypeptide to screen 2640 pharmacologically active compounds and identify insulinotropic molecules that bypass the secretory defect in CRISPR-Cas9-targeted clock mutant ß-cells. We validated hit compounds in primary mouse islets and identified known modulators of ligand-gated ion channels and G-protein-coupled receptors, including the antihelmintic ivermectin. Single-cell electrophysiology in circadian mutant mouse and human cadaveric islets revealed ivermectin as a glucose-dependent secretagogue. Genetic, genomic, and pharmacological analyses established the P2Y1 receptor as a clock-controlled mediator of the insulinotropic activity of ivermectin. These findings identify the P2Y1 purinergic receptor as a diabetes target based upon a genetically sensitized phenotypic screen.


Circadian rhythms ­ 'inbuilt' 24-hour cycles ­ control many aspects of behaviour and physiology. In mammals, they operate in nearly all tissues, including those involved in glucose metabolism. Recent studies have shown that mice with faulty genes involved in circadian rhythms, the core clock genes, can develop diabetes. Diabetes arises when the body struggles to regulate blood sugar levels. In healthy individuals, the hormone insulin produced by beta cells in the pancreas regulates the amount of sugar in the blood. But when beta cells are faulty and do not generate sufficient insulin levels, or when insulin lacks the ability to stimulate cells to take up glucose, diabetes can develop. Marcheva, Weidemann, Taguchi et al. wanted to find out if diabetes caused by impaired clock genes could be treated by targeting pathways regulating the secretion of insulin. To do so, they tested over 2,500 potential drugs on genetically modified beta cells with faulty core clock genes. They further screened the drugs on mice with the same defect in their beta cells. Marcheva et al. identified one potential compound, the anti-parasite drug ivermectin, which was able to restore the secretion of insulin. When ivermectin was applied to both healthy mice and mice with faulty beta cells, the drug improved the control over glucose levels by activating a specific protein receptor that senses molecules important for storing and utilizing energy. The findings reveal new drug targets for treating forms of diabetes associated with deregulation of the pancreatic circadian clock. The drug screening strategy used in the study may also be applied to reveal mechanisms underlying other conditions associated with disrupted circadian clocks, including sleep loss and jetlag.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Islotes Pancreáticos/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Factores de Transcripción ARNTL , Animales , Línea Celular , Relojes Circadianos , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Homeostasis , Humanos , Insulina/metabolismo , Células Secretoras de Insulina , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Cell Metab ; 29(5): 1078-1091.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827863

RESUMEN

The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hambre/fisiología , Neuronas/metabolismo , Transcripción Genética/genética , Proteína Relacionada con Agouti/genética , Animales , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Redes Reguladoras de Genes , Glucosa/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/genética , Sueño/fisiología , Transcriptoma , Vigilia/fisiología
12.
Cell Metab ; 25(1): 86-92, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27773696

RESUMEN

Circadian clocks are encoded by a transcription-translation feedback loop that aligns energetic processes with the solar cycle. We show that genetic disruption of the clock activator BMAL1 in skeletal myotubes and fibroblasts increased levels of the hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions. Bmal1-/- myotubes displayed reduced anaerobic glycolysis, mitochondrial respiration with glycolytic fuel, and transcription of HIF1α targets Phd3, Vegfa, Mct4, Pk-m, and Ldha, whereas abrogation of the clock repressors CRY1/2 stabilized HIF1α in response to hypoxia. HIF1α bound directly to core clock gene promoters, and, when co-expressed with BMAL1, led to transactivation of PER2-LUC and HRE-LUC reporters. Further, genetic stabilization of HIF1α in Vhl-/- cells altered circadian transcription. Finally, induction of clock and HIF1α target genes in response to strenuous exercise varied according to the time of day in wild-type mice. Collectively, our results reveal bidirectional interactions between circadian and HIF pathways that influence metabolic adaptation to hypoxia.


Asunto(s)
Relojes Circadianos , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Anaerobiosis , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Especificidad de Órganos , Consumo de Oxígeno , Condicionamiento Físico Animal , Transcripción Genética
13.
J Biol Rhythms ; 31(4): 323-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27440914

RESUMEN

The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease.


Asunto(s)
Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2/fisiopatología , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Transcripción Genética , Animales , Relojes Circadianos , Diabetes Mellitus Tipo 2/genética , Ayuno , Genómica , Humanos , Resistencia a la Insulina/genética , Secreción de Insulina , Ratones , Fotoperiodo , Sueño/fisiología , Vigilia
14.
Science ; 350(6261): aac4250, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542580

RESUMEN

The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic ß cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that ß cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.


Asunto(s)
Ritmo Circadiano/genética , Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/genética , Intolerancia a la Glucosa , Proteínas de Homeodominio/metabolismo , Humanos , Secreción de Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transactivadores/metabolismo , Transcripción Genética
15.
Semin Ophthalmol ; 28(5-6): 406-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24010846

RESUMEN

Daily changes in the light-dark cycle are the principal environmental signal that enables organisms to synchronize their internal biology with the 24-hour day-night cycle. In humans, the visual system is integral to photoentrainment and is primarily driven by a specialized class of intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin (OPN4) in the inner retina. These cells project through the retinohypothalamic tract (RHT) to the suprachiasmatic nuclei (SCN) of the hypothalamus, which serves as the body's master biological clock. At the same time, the retina itself possesses intrinsic circadian oscillations, exemplified by diurnal fluctuations in visual sensitivity, neurotransmitter levels, and outer segment turnover rates. Recently, it has been noted that both central and peripheral oscillators share a molecular clock consisting of an endogenous, circadian-driven, transcription-translation feedback loop that cycles with a periodicity of approximately 24 hours. This review will cover the role that melanopsin and ipRGCs play in the circadian organization of the visual system.


Asunto(s)
Ritmo Circadiano/fisiología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/fisiología , Visión Ocular/fisiología , Animales , Humanos , Luz , Núcleo Supraquiasmático/fisiología
16.
Methods Mol Biol ; 1077: 285-302, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014414

RESUMEN

Many of our behavioral and physiological processes display daily oscillations that are under the control of the circadian clock. The core molecular clock network is present in both the brain and peripheral tissues and is composed of a complex series of interlocking transcriptional/translational feedback loops that oscillate with a periodicity of ~24 h. Recent evidence has implicated NAD(+) biosynthesis and the sirtuin family of NAD(+)-dependent protein deacetylases as part of a novel feedback loop within the core clock network, findings which underscore the importance of taking circadian timing into consideration when designing and interpreting metabolic studies, particularly in regard to sirtuin biology. Thus, this chapter introduces both in vivo and in vitro circadian methods to analyze various sirtuin-related endpoints across the light-dark cycle and discusses the transcriptional, biochemical, and physiological outputs of the clock.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , NAD/metabolismo , Sirtuinas/metabolismo , Animales , Retroalimentación Fisiológica , Locomoción , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Sirtuinas/genética , Transcripción Genética
17.
Science ; 342(6158): 1243417, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24051248

RESUMEN

Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.


Asunto(s)
Relojes Circadianos/fisiología , Metabolismo Energético , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Acetilación , Animales , Relojes Circadianos/genética , Ayuno , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Consumo de Oxígeno , Sirtuina 3/genética , Sirtuina 3/metabolismo
18.
Cell Logist ; 1(1): 32-36, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21686102

RESUMEN

The molecular clock controls 24-hour cycles of behavioral and physiological processes across the day-night cycle. Disruption of circadian rhythmicity has been implicated in the pathogenesis of several diseases, including the metabolic syndrome, although the role of clock genes in these disorders is still not well understood. Studies of the etiology of diabetes in circadian mutant mice have revealed a novel role for the clock in pancreatic ß-cell insulin secretion, suggesting that a major cellular function of the circadian network involves control of protein exocytosis.

19.
J Clin Invest ; 121(6): 2133-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21633182

RESUMEN

The discovery of the genetic basis for circadian rhythms has expanded our knowledge of the temporal organization of behavior and physiology. The observations that the circadian gene network is present in most living organisms from eubacteria to humans, that most cells and tissues express autonomous clocks, and that disruption of clock genes results in metabolic dysregulation have revealed interactions between metabolism and circadian rhythms at neural, molecular, and cellular levels. A major challenge remains in understanding the interplay between brain and peripheral clocks and in determining how these interactions promote energy homeostasis across the sleep-wake cycle. In this Review, we evaluate how investigation of molecular timing may create new opportunities to understand and develop therapies for obesity and diabetes.


Asunto(s)
Ritmo Circadiano/fisiología , Metabolismo Energético/fisiología , Sueño/fisiología , Animales , Encéfalo/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/fisiopatología , Dieta , Grasas de la Dieta/efectos adversos , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Ratones , Ratones Mutantes , Red Nerviosa/fisiología , Neuropéptidos/fisiología , Obesidad/fisiopatología , Orexinas , Transducción de Señal , Privación de Sueño/fisiopatología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología
20.
Best Pract Res Clin Endocrinol Metab ; 24(5): 785-800, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21112026

RESUMEN

Social opportunities and work demands have caused humans to become increasingly active during the late evening hours, leading to a shift from the predominantly diurnal lifestyle of our ancestors to a more nocturnal one. This voluntarily decision to stay awake long into the evening hours leads to circadian disruption at the system, tissue, and cellular levels. These derangements are in turn associated with clinical impairments in metabolic processes and physiology. The use of animal models for circadian disruption provides an important opportunity to determine mechanisms by which disorganization in the circadian system can lead to metabolic dysfunction in response to genetic, environmental, and behavioral perturbations. Here we review recent key animal studies involving circadian disruption and discuss the possible translational implications of these studies for human health and particularly for the development of metabolic disease.


Asunto(s)
Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Enfermedades Metabólicas/etiología , Trastornos del Sueño del Ritmo Circadiano/complicaciones , Animales , Relojes Biológicos/fisiología , Encéfalo/fisiopatología , Humanos , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/fisiopatología , Modelos Biológicos , Fotoperiodo , Trastornos del Sueño del Ritmo Circadiano/metabolismo , Trastornos del Sueño del Ritmo Circadiano/patología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA